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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 163 { 165SEMIMODULARITY IN LOWER CONTINUOUSSTRONGLY DUALLY ATOMIC LATTICESAndrzej WalendziakAbstract. For lattices of �nite length there are many characterizations of semi-modularity (see, for instance, Gr�atzer [3] and Stern [6]{[8]). The present paper dealswith some conditions characterizing semimodularity in lower continuous stronglydually atomic lattices. We give here a generalization of results of paper [7].1. PreliminariesLet L be a lattice. By [a; b] (a � b; a; b 2 L) we denote an interval, that is theset of all c 2 L for which a � c � b. For a; b 2 L we say that a is a lower cover ofb and we write a��< b if and only if a < b and [a; b] = fa; bg.A lattice L is called strongly dually atomic (see [4]), if for any a; b 2 L witha < b there is p 2 [a; b] such that p��< b. A complete lattice L is lower continuous,if a _VVVC =VVVfa _ c : c 2 Cg for all a 2 L and for all chains C in L.Semimodularity is usually de�ned as follows:De�nition. A lattice L is called (upper) semimodular, if for all a; b 2 L, a^b��< aimplies b��< a _ b.It is immediate that modular lattices and geometric lattices are semimodular.There are many semimodular lattices being neither modular nor geometric (seeBirkho� [1], Crawley-Dilworth [2], Gr�atzer [3] and Stern [8]).2. ResultsFirst we put J(L) := fu 2 L : u = a _ b implies u = a or u = bg. The elementsof J(L) are called the join-irreducibles of L. In a strongly dually atomic lattice Lthe unique lower cover of a join-irreducible (0 6=)u 2 J(L) is denoted by u0. As apreparation we need.1991 Mathematics Subject Classi�cation: 06C10.Key words and phrases: lower continuous lattices, strongly dually atomic lattices, semimod-ular and atomic lattices.Received April 11, 1995.



164 ANDRZEJ WALENDZIAKLemma. Let L be a lower continuous strongly dually atomic lattice. If p ��< q(p; q 2 L), then there exists a join-irreducible u 2 J(L) such that p _ u = q andp ^ u = u0.Proof. Consider the set T := ft 2 L : p_ t = qg. T is nonempty, since q 2 T . LetC be a chain in T . The lower continuity yieldsp _ ^̂̂C = ^̂̂fp _ c : c 2 Cg = q :Thus VVVC 2 T , and T contains a minimal element u, by Zorn's lemma. Clearly,u 2 J(L), p _ u = q and from u 6� p it follows that p ^ u � u0.Observe that u0 � p. Indeed, if u0 6� p, then p _ u0 = q, that is u0 2 T and u0 < u,contradicting the minimality of u. Thus we have u0 � p ^ u. Hence we obtainp ^ u = u0 which completes the proof. �Remark 1. For lattices of �nite length this lemma was proved in Stern [5] (seealso [8], p. 25).Our main result is the followingTheorem 1. Let L be a lower continuous strongly dually atomic lattice. Thenthe following conditions are equivalent:(i) L is semimodular,(ii) L satis�es the exchange property for join-irreducibles, i.e.,for all u; v 2 J(L) and arbitrary b 2 L, v � b _ u and v 6� b _ u0imply u � b _ v _ u0,(iii) b ^ u��< u implies b��< b _ u for all u 2 J(L) and b 2 L.Proof. Implication (i)) (ii) follows from the proof of Theorem of [7].(ii)) (iii). Suppose that (iii) does not hold. Let u 2 J(L), b; q 2 L be elementssuch that u ^ b = u0 ��< u and b < q < b _ u. Since L is strongly dually atomicthere is an element p 2 L such that b � p ��< q < b _ u.By Lemmawe get the existence of a join-irreducible element v 2 J(L) with p_v =q. It follows that v � b _ u and v 6� b = b _ u0. Applying (ii) we obtain thatu � b _ v _ u0 = b _ v. Then b _ u � b _ v � q. This contradiction shows that (iii)holds.(iii)) (i). Let a; b 2 L be elements for which a ^ b ��< a. Without loss ofgenerality we may assume that a; b are incomparable elements. By Lemma, thereexists a join-irreducible element u 2 J(L) such that (a^ b)_u = a and b^u = u0.Applying (iii) we get that b ��< b _ u. Since a _ b = (a ^ b) _ u _ b = b _ u, weobtain b��< a _ b, which shows that L is semimodular. �Remark 2. Since every lattice of �nite length is lower continuous and stronglydually atomic, from this theorem it follows Theorem of [7].We recall that a lattice L is atomistic if every non-zero element of L is a join ofatoms. In an atomistic lattice each join-irreducible element is an atom. Then, asthe consequence of Theorem 1 we get the following result which is a generalizationof Corollary of [7].



SEMIMODULARITY IN LATTICES 165Theorem 2. Let L be an atomistic lower continuous strongly dually atomic lat-tice. Then the following conditions are equivalent:(i) L is semimodular,(ii) L satis�es the Steinitz-MacLane exchange property, that is,for all atoms p; q 2 L and for arbitrary b 2 L,the relations p � b _ q and p 6� b imply q � b _ p,(iii) L has the covering property, i.e.,b ^ p = 0 implies b��< b _ p for any atom p 2 L and for arbitrary b 2 L.References[1] Birkho�, G., Lattice Theory, 3rd edition, American Mathematical Society, Providence, RI,1967.[2] Crawley, P., Dilworth, R. P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cli�s(N.J.), 1973.[3] Gr�atzer, G., General Lattice Theory, Birh�auser Basel, 1978.[4] Richter, G., The Kuro�s-Ore Theorem, �nite and in�nite decompositions, Studia Sci. Math.Hungar., 17(1982), 243-250.[5] Stern, M., Exchange properties in lattices of �nite length, Wiss. Z. Martin-Luther-Univ.Halle-Wittenberg Math.-Natur. Reihe 31 (1982), 15-26.[6] Stern, M., Semimodularity in lattices of �nite length, Discrete Math. 41 (1982), 287-293.[7] Stern, M., Characterizations of semimodularity, Studia Sci. Math. Hungar. 25 (1990), 93-96.[8] Stern, M., Semimodular Lattices, B. G. Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1991.Andrzej WalendziakDepartment of MathematicsAgricultural and Pedagogical UniversityPL-08110 Siedlce, POLAND
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