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PERIODIC SOLUTIONS FOR
NONLINEAR EVOLUTION INCLUSIONS

DiMITRIOS A. KANDILAKIS AND NIKOLAOS S. PAPAGEORGIOU

ABSTRACT. In this paper we prove the existence of periodic solutions for a class
of nonlinear evolution inclusions defined in an evolution triple of spaces (X, H, X *)
and driven by a demicontinuous pseudomonotone coercive operator and an upper
semicontinuous multivalued perturbation defined on T' x X with values in H. Our
proof is based on a known result about the surjectivity of the sum of two operators
of monotone type and on the fact that the property of pseudomonotonicity is lifted
to the Nemitsky operator, which we prove in this paper.

1. INTRODUCTION

In this paper we study the problem of existence of periodic solutions for evolu-
tion inclusions driven by time-dependent, demicontinuous, coercive pseudomono-
tone operators defined within the framework of an evolution triple of spaces.

A very common approach in dealing with periodic problems of evolution equa-
tions, is to impose conditions on the perturbation term, which guarantee the
uniqueness of the solution of the corresponding Cauchy problem and thus make it
easier to apply on the Poincare map one of the classical fixed point theorems. The
first major result in this direction is due to Browder [4] who considers semilinear
systems in a Hilbert space driven by a monotone operator with a single-valued
perturbation term f(¢, ), which is monotone in . Browder uses the fixed point
theorem for nonexpansive maps in a uniformly convex Banach space (in particular
in a Hilbert space; see for example Brezis [3] theorem 1.2, p.5 or Goebel-Kirk [9],
theorem 4.1, p.40).

The next major result on periodic solutions for evolution equations, can be
traced in the work of Priiss [17]. Priss considers semilinear, time invariant sys-
tems and abandons the monotonicity condition on f(¢,.) in favor of a Nagumo-type
tangential condition. He also assumes that the linear unbounded operator govern-
ing the equation generates a compact semigroup or alternatively that the single-
valued perturbation term f(t, ) is compact. Subsequently Becker [2] considered
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semilinear equations driven by a closed densely defined linear operator A(.) which
generates a compact semigroup. Using a perturbation term of special form and
an extra condition which essentially amounts to saying that A — Al is m-accretive
for some A > 0, Becker proves the existence of a unique periodic solution.

The first fully nonlinear existence results for the periodic problem, were ob-
tained recently by Vrabie [19] and Hirano [11]. Vrabie’s work can be viewed as
a nonlinear extension of Becker’s result. He assumes that the nonlinear time
invariant operator A monitoring the evolution equation is such that A — A7 is
m-accretive for some A > 0 and that —A generates a compact semigroup (via the
Crandall-Liggett exponential formula). His perturbation term f(¢, z) is single val-
ued, satisfies the Caratheodory conditions (i.e. is measurable in ¢ and continuous
in ) and also obeys a rather restrictive assymptotic growth condition. Hirano on
the other hand considers an evolution equation defined in a Hilbert space, driven
by a time invariant nonlinear operator of the subdifferential type which gener-
ates a compact semigroup of contractions and with a single-valued Caratheodory
perturbation term of sublinear growth, which satisfies a unilateral condition.

From all the above works none considers multivalued perturbations (i.e. evolu-
tion inclusions). The only work in this direction is that of Hu-Papageorgiou [12],
who consider evolution inclusions defined in an evolution triple of Hilbert spaces
and by using a tangential condition and Galerkin approximations they proved the
existence of a periodic solution for a problem with a Caratheodory multivalued
perturbation F'(t,z) defined on 7" x H into H. This result was recently improved
by Hu-Papageorgiou[13].

Our work here extends all the above mentioned results. We deal with time-
dependent systems having multivalued perturbations and which are defined within
the framework of an evolution triple of spaces (X, H, X*). We only assume that
X embeds compactly in H. This hypothesis does not imply that A(¢,.), ¢ € T,
generates a compact semigroup or that the perturbation term F(¢,2) (assumed
to be multivalued, defined on 7' x X with values in H and demicontinuous in
x) is actually compact. Our proof is based on a general surjectivity result for a
certain sum of operators of monotone type and on a proposition which shows that
the property of pseudomonotonicity can be lifted to the Nemitsky (superposition)
operator.

2. MATHEMATICAL PRELIMINARIES

In this section we fix our notation and briefly recall some basic definitions and
facts from the theory of multifunctions and from nonlinear functional analysis,
which we will need in the sequel.

So let (£2,X) be a measurable space and Y a separable Banach space. We will
be using the following notations:

Prey(Y) ={A CY : Ais nonempty, closed (and convex)}

and Pryye(e) = {A C Y : A is nonempty, (weakly-) compact (and convex)}.

A multifunction (set-valued function) F' : @ — P(Y) is said to be measurable if
the R4 —valued function w — d(z, F(w)) = inf{||z — z|| : 2 € F(w)} is measurable
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for every « € Y. If there is a o-finite measure p(.) defined on ¥ and X is y-complete
(or more generally without requiring the presence of p4(.) when X is closed under the
Souslin operation), then the above definition of measurability of F'(.) is equivalent
to saying that GrF = {(w,2) € QA xY 12 € F(w)} € ¥ x B(Y) with B(Y) being
the Borel field of Y (graph measurability). For further details we refer to the
survey paper of Wagner [20].

Let I : Q@ — P¢(Y) be a measurable multifunction and let 1< p < co. By S%
we will denote the selectors of F'(.) which belong to the Lebesgue-Bochner space
Lr(QY)ie S% ={f € LP(QY): f(w) € F(w)a.e.}. This set may be empty.
It is easy to check using Aumann’s selection theorem (see Wagner [20], theorem
5.10), that S% is nonempty iff w — inf{||z|| : # € F(w)} € LP(£2). Moreover ST, is
closed in LP(Q,Y) and is convex iff F'(w) is convex for p-almost all w € Q.

Let V, W be two Hausdorff topological spaces. A multifunction G : V —
2W\ {0} is said to be upper semicontinuous (u.s.c.) if for all C C W closed, the
set GT(C)={v eV  :Gv)NC # B} is closed in V. If G(.) is u.s.c. with closed
values and W is regular, then GrG = {(v,w) € V x W : w € G(v)} is closed in
V x W. The converse is true if G(V) is compact in W (see DeBlasi-Myjak [7]).

The mathematical setting of our problem will be the following: Let 7" = [0, b]
and H be a separable Hilbert space. Let X be a dense subspace of H carrying the
structure of a separable, reflexive Banach space, which embeds into H continuously.
Identifying H with its dual (pivot space), we have that X C H C X*, with all
embeddings being continuous and dense. Such a triple of spaces is known in the

literature as ”evolution triple” (see Zeidler [21]; some times the name Gelfand
triple is also used). By ||.|| (resp. | . [, ||.||«) we will denote the norm of X (resp.
of H, X*). Also by (.,.) we will denote the inner product of A and by {(.,.)
the duality brackets for the pair (X, X*). The two are compatible in the sense
that (.,.) |gxx= (.,.). Alsofor 1 < p < ¢ < o0, %—I— % = 1 define W,,(T) =
{e € IPV(T,X) : & € LYT,X*)}. In this definition the time derivative of z(.) is
taken in the sense of vector-valued distributions. When furnished with the norm
ellwycry = D2li2zx, + 16112 o, xoy] the space W, (T) becomes a separable,
reflexive Banach space. It is well known that W,,(T") embeds continuously into
C(T, H) (see Zeidler [21], proposition 23.23, p.422). So every element in W,,(T)
after possible modification on a Lebesgue null set is equal to a continuous function
from T into H. Furthermore if X embeds compactly into H, then so does W, (1)
in LP (T, H) (see Zeidler [21], p.450).

We will be studying the following periodic problem defined on 7" and the evo-
lution triple (X € H C X*):

) { z(t)+ A, z(t)) + F(t,z(t)) D h(t) a.e. on T}

2(0) = z(b)

Here A:Tx X — X* F:Tx X — 20\ {0} and h € LY(T, X*).
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Definition 1. By a solution of (1) we mean a function # € W,,(T') such that
)+ Alt,z()+ f(t) = h(t) a.e. on T, 2(0) = z(b) and f € S%(vx(.)).

Remark 1. Since W,,(T) embeds into C(T, H), the pointwise evaluations z(0)
and z(b) make sense. Moreover a solution #(.), when viewed as an X*-valued func-
tion 1s absolutely continuous. Hence it is strongly differentiable almost everywhere
and its derivative 2(.) is of course in LY(T, X*) (i.e. z € ACHI(T, X*)).

3 AUXILIARY RESULTS

As we already mentioned, our proof will be based on a general surjectivity result
for the sum of two operators of monotone type. Although the result is known (see
for example Lions [14], theorem 1.2, p.319 or B-A. Ton [18], corollary 1, p.610),
however for the convenience of the reader we state it here. First a definition:

Definition 2. Suppose that Y is a reflexive Banach space, L : D(L) CY — Y™ is
a linear densely defined maximal monotone operator and 7' : ¥V — Py (Y™) is
a multivalued operator. We will say that 7'(.) is pseudomonotone with respect
to D(L) if for {yntn>1 € D(L) with y, — y in Y and L(y,) — L(y) in Y* as
n — oo and for ¥ € T(y,),n > 1, satisfying y% = y* in Y* as n — oo and
Em(y?, yn) < (y*,y), we have y* € T(y) and (¥}, yn) — (¥*,y) as n — co.

The surjectivity result that we will be using in the sequel is the following:

Proposition 1. If Y is a reflexive Banach space, L : D(L) C Y — Y*is a
linear densely defined maximal monotone operator and T : Y — Pup.(Y™) is
bounded, pseudomonotone with respect to D(L), u.s.c. fromY into Y} (here Y.}
denotes the Banach space Y furnished with the weak topology) and coercive (i.e.

mf[gy*—’y2 syt €T(y)] — oo as ||y|| — o) then R(L+T) =Y* (iie. L+ T is

Uil
surjective).

Remark 2. Recall that L : D(L) CY — Y™ is a linear, densely defined maximal
monotone operator iff L(.) is closed, monotone and L*(.) is also monotone (see for
example Zeidler [21], theorem 32.1, p.897).

The second auxilliary result that we will use in our main existence theorem (see
theorem 1), roughly speaking says that the pseudomonotonicity property of A(,.)
lifts to the Nemitsky operator E() (g(x)() = A(.,z(.))) as pseudomonotonicity
with respect to D(L), with L(z) = 2 for x € D(L) = {x € W,o(T) : (0) = z(b)}.
First recall that an operator 7' : X — X™* is said to be demicontinuous (resp.
pseudomonotone) if for #, — x in X as n — oo we have T'(z,) = T(z) in X* as
n — oo (resp. if for x, = 2 in X as n — oo and lim (T(x,), z, —x) < 0 we have
(T(x),x —v) < im{T(z,), x, —v) for all v € X). Our hypothesis on the operator
A(t, ) is the following:

H(A): A: T x X — X* is an operator such that

(i) t — A(t, ») is measurable,

(ii) A(t, z) is demicontinuous and pseudomonotone,
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(iv) (A(t, z), ) > ¢||z||P for almost all ¢t € T, all x € X and with ¢ > 0.

Remark 3. Given y € Y, let u(y) : T x X — R be defined by

w(y)(t,x) = (A(t,z),y). Evidently, because of hypotheses H(A) (i) and (ii),
t — wu(y)(t,x) is measurable and » — u(y)({, ) is continuous (i.e. u(y)(.,.) is
a Caratheodory function). Hence (¢,z) — u(y)(t,z) is jointly measurable (see
Wagner [20], lemma 7.5, p.877). Since y € Y was arbitrary we deduce that
(t,z) — A(t, z) is weakly measurable and since X is separable and reflexive from
the Pettis measurability theorem (see Diestel-Uhl [8] theorem 2, p.42) we conclude
that (¢, 2) — A(t, %) is jointly measurable.

Hence for every « : T — X measurable function, ¢ — A(¢,2(t)) is measur-
able from T into X. In particular, because of hypothesis H(A) (iii) if #(.) €
LP(T, X), then A(,.2z(.)) € LY(T, X*). So we can define the Nemitsky operator
A LP(t,X) — LYT, X*) corresponding to A(t,z) by E(aj)() = A(.,z(.)). Fi-
nally recall that since X is reflexive LP(T,X)* = L(T,X*) (see Diestel-Uhl [§]
theorem 1, p.98). By ((.,.)) we will denote the duality brackets of this pair; i.e. if
e LP(T,X) and v € LY(T, X*) then (( fo ))dt.

Let L : D(L) : IX(T, X) — Lq(T,X*) be deﬁned by L( ) = & (again the time
derivative of z(.) is taken in the sense of vector valued distributions) with « €
D(L) ={y e LP(T\X) 1y € LY(T,X"),y(0) = y(b)} C Wpoe(T). Evidently this
is a linear, densely defined, closed monotone operator. Also from the integration
by parts formula for functions in Wy, (T) (see Zeidler, prop. 23.23, p.423), we can
easily check that L* : D(L*) C IP(T,X) — LT, X*) is given by L*(v) = —0v
with v € D(L) = D(L*) C W,e(T). So L*(.) is monotone and thus by virtue of
remark 2 we conclude that L(.) is maximal monotone.

Proposition 2. If A:TxX — X~ satisfies hypothesis H(A) then A:Lp (1, X) —
L4(T, X*) is demicontinuous and pseudomonotone with respect to D(L).

Proof. First we will show the demicontinuity of A. So let #, — » in LP(T, X)
as n — co. We can find a subsequence {x,, }r>1 of {,}n>1 such that z,, (t) —
z(t) a.e. in X as k — oo. Then because of hypothesis H(A)(ii) for any given
y € LP(T, X) we have (A(t,2,,(2)),y(t)) — (A(t,z(t)),y(t)) a.e. on T. Because
of hypothesis H(A)(iii) we can apply the generalized dominated convergence the-
orem (see for example Ash [ 1, theorem 7.5.2, p. 295) and get that ((E(xnk), y)) =
fo (t, 20, (1)), y(t))dt — fo yx(1)), y(t))dt = ((A(a:),y)) as k — oo and since
y was arbitrary we get the semlcontmuity of E()

We will now show the pseudomonotonicity of E() with respect to D(L). So
let 2, — & in W,,(T) as n — oo and assume that W((ﬁ(rn), zp —x)) < 0. Let
En(t) = (A(t, a0 (1)), 2a(t) — 2(1)). Since Wy (T) embeds continuously in C(T, H),
we have that z, — z in C(T,H) as n — oo and so for every ¢t € T we have
zn(t) 2 x(t) in H as n — oo. On the other hand let N C T be the exceptional
Lebesgue-null set outside of which hypotheses H(A)(iii) and (iv) hold. Then for
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t € T\N we have

(2) €n(t) 2 en(t) = cllza @I = (ar(t) + exllen @Oz

IfC={teT:limé,(t) < 0} (which is measurable) and u(C') > 0 (p(.) being the
Lebesgue measure on T'), then from (2) above for every ¢t € C'N(T\N) we will have
that {x,(t)},>1 is bounded in X. Since X is reflexive and x,(¢) = z(t) in H as
n — 0o , we get that z,(t) = z(t) in X as n — oo for t € C' N (T\N). Exploiting
the fact that A(¢,.) is pseudomonotone we get that {A(t, z,(2)), 2 (t) — 2(t)) — 0
as n — oo for t € C'N(T\N) contradicting the definition of C'. So &,(¢) > 0 a.e.
on T'. Then from Fatou’s lemma we have

b b b
os/0 h_mfn@)dtsn_m/o &(t)dtsm/o £a(t)dt < 0

hence fob Ea(t)dt — 0 as n — oo.Note that | &,(t) |[= &F () =&, (1) = €, (8)+28, (1).
Since limé&, (¢) > 0 a.e. on T, we have that & () — 0 a.e. on T as n — oo. Also
recall that because of hypotheses H(A)(iii) and (iv) ¢n(t) < €,(¢) a.e. on T with
{¢n}tn>1 C LY(T) being uniformly integrable. So 0 < &7 (¢) < ¢, (t) a.e on 1" and
of course {p, (t)} is uniformly integrable. Hence a new application of the general-

ized dominated convergence theorem gives us that lim fob &, (t)dt = 0. Thus we
n—oo

finally have that lim fob | €a(t) | dt = 0,1.e & — 0in LY(T) as n — oco. Moreover

by passing to a subsequence if necessary, we may assume that ,(¢) — 0 a.e. on T
as n — oo. Because A(t,.) is pseudomonotone (see hypothesis H(A)(ii)), we have
that A(t, z,(t)) = A(t,z(t)) a.e. in X* and (A(t, 2, (1)), 2. (1)) — (A(t, x(1)), z(t))
a.e. on T as n — oo. Then from the demicontinuity of E() and the generalized
dominated convergence theorem we get that E(xn) et E(a:) in LY(T,X*) and
((ﬁ(xn), Tn)) = ((ﬁ(x) ,z)). Therefore E() is pseudomonotone with respect to
D(L).

4. EXISTENCE OF PERIODIC SOLUTIONS

In this section we establish the existence of solutions for problem (1). Our
hypotheses on the multivalued perturbation term F'(¢, #) are the following:

H(F): F:T x X — P;.(H) is a multifunction such that:

(i) t — F(t,x) is measurable,

(il) GrF(t,.) is sequentially closed in Xy, x Hy,

(iii) | F(t,z) |[< az(t) + ea|z]|P~1 a.e on T with as € LY(T), ¢ > 0, and

(iv) for almost all ¢ € T, all x € X and all v € F(¢,x) we have {(v,2) >
—es||z||P — ca(t) with ez > 0, ea(.) € L1(T) and ¢3 < ¢ where ¢ > 0 is the constant
from H(A)(iv).
Theorem 1. If hypotheses H(a), H(F) hold, h € L(T, X*) and X embeds com-
pactly in H then problem (1) has a solution.

Proof. Recall that L : D(L) C LP(T,X) — LYT,X") defined by L(z) = &
for # € D(L) = {y € LP(T,X) 1y € LI(T, X"),y(0) = y(b)} C W,o(T), is
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a linear, densely defined maximal monotone operator (see section 3). Next let
T LP(T,X) — 2" (T X7) bhe defined by T(x) = E(l‘) + G(z) with A being the
Nemitsky operator corresponding to A(t,z) and G(z) = S%(vx(.)). First we will
show that T'(.) is Pyr(LY(T, X*)) -valued. Since ﬁ() is single valued and G(.) has
closed, convex and bounded values in L4(T, H) (see hypothesis H(F)), to establish
that T'(.) is Pyre(LI(T, X*)) -valued, it suffices to show that G(.) has nonempty
values. To this end let #(.) € LP(T, X) and let s,(.),n > 1, be X-valued simple
functions such that s, — x a.e. on T"in X as n — oo and ||s, — &||Lr(p,x) — 0 as
n — oo. Because of hypothesis H(F)(i) ¢t — F(¢,s,(t)),n > 1, is measurable and
so by Aumman’s selection theorem there exists a measurable function v, : T'— H
such that v,(t) € F(t,2,(t)) for all t € T,n > 1. Evidently {v,},>1 is bounded
in L9(T, H) (see hypothesis H(f)(iii)) so we may assume that v, — v in LI(T, H).
Invoking theorem 3.1 of Papageorgiou [15], we get that

v(t) € eonvw — lim{v,, (t) }n>1 C convw — limF (¢, s,(t)) C F(t,2(t)) ae. on T,

the last inclusion being a consequence of hypothesis H(F)(iii). So v € S%(.yx(.))
hence G(z) # 0. Therefore T': LP(T, X) — Pyr (LT, X*)) and because of hy-
potheses H(A)(iii) and H(F)(iii) is bounded (i.e. maps bounded sets into bounded
sets). Now we will show that T(.) is u.s.c. from LP(T,X) into LT, X*),
(here LI(T, X*), denotes the Lebesgue-Bochner space LI(T, X*) equipped with
the weak topology). So let C' C LT, X*) be weakly closed and let T~ (C) =
{e € LP(T,X) : T(x) N C # 0}. We need to show that T~ (C) is closed.
For this, let #, — « in LP(T,X) as n — oo with #, € T7(C), n > 1. Let
gn € T(xy)NC, n > 1. By passing to a subsequence if necessary, we may as-
sume that g, = ¢ in LY(T,X*) and #,(t) — x(t) a.e. on T as n — oo. By
virtue of the last proposition g(xn) = E(a:) in LI(T,X*) as n — oo while if
Vp = Gn — g(xn),n > 1, and v = g — g(x), then as above via theorem 3.1 of
Papageorgiou [15] we have that v(t) € F(¢,z(t)) a.e. on T. So g— E(a:) =
with v € S%(vx(.)), ie. g € T(x). Also g € C since the latter is weakly closed
in LT, X*). Thus # € T~ (C) which implies that 7(.) is u.s.c. from L?(T, X)
into L4(T, X*)y. Next we will show that T'(.) is pseudomonotone with respect
to D(L). To this end let z, — = in W,y (T) g, — ¢ in LI(T,X*) as n — oo
with g, € T(2,), n > 1, and assume that lim((gn,z, — =)) < 0. Note that
In = ﬁ(mn) + v, with v, € G(z,) = S%(vxn(.)),
tually have g, € LI(T, H),n > 1, and because of hypothesis H(F)(iii), by passing
to a subsequence if necessary, we may assume that v, — v in LY(T, H). Finally
note that since x,, — x in Wpe(T') and W, (T') embeds compactly in LP(T, H) (see
section 2), we have that z,, — « in L?(T, H). Then:

n > 1. Also observe that we ac-

Tm((A(zn), 0 — 7)) + im((v,, 2, — 7))
(3) = Tm((A(zn), 2 — 2)) + Um(vn, 2 — ) Laer,m), Lo(r, )

—_ o~ JE—

< lm((A(zp) + v, 2 — 2)) = im((gn, o — 2)) <0
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Since (vn, ®n — ®)pa(r,m),Lr(r,H) — 0 as n — oo, from (3) above we get that
E((ﬁ(xn), zp—2)) < 0. But from Proposition 2 we know that E() is pseudomono-
tone with respect to D(L). So A(zn) — A(x) in LI(T, X*) and ((A(zp), 2n)) —

o~

((A(zn), %)) as n — o0o. As in the proof of proposition 2 we set
£0(t) = (AL, 2a(t)), 2nt) — 2(0)), 0> 1.

From that proof we know that &, — 0 in L}(T) as n — oo and by passing to a
subsequence if necessary we may also assume that £,(t) — 0 a.e. in 7" as n — oo.
Also from hypotheses H(A)(iii) and (iv) we have:

(4) €n(t) 2 cllzn (P = (ar(t) + exflza (WP Hllz(D)]] ace. on T

Our claim is that (4) above implies that for almost all ¢ € 7" we have sup ||z, (¢)||
n>1

< o0. Suppose not. Then there is a €' C T with u(C') > 0 such that supﬂxn )] =
n>1

oo forall t € C. Let ¢ = @ By Egoroff’s theorem there exists €y C T with
#(Cy) < esuch that &,(¢) — 0 asn — oo uniformly on T\Cy. Let Cy = (T\C1)NC.
We remark that p(C2) > 0. Indeed if this is not the case, then

b= p((T\C1) U C) = p(T\C1) U C) + p(Ch)
(©)

= u(T\C1) + p(C) > b— B2

5 +pu(C) > b

a contradiction. Then for t € (T\C1)NC N(T\N1) = CN(T\Ny) (with Ny being

the Lebesgue-null subset of T outside of which we have &,(¢t) — 0 as n — o),

we have | &,(t) |< My and so from (4) we deduce that sup ||z, (¢)|] < oo for all
n>1

t € (T\C1) N C N (T\N1), a contradiction to the choice of C'. Therefore u(C) =0
and so sup ||z, (?)|| < oo for all ¢ € T\Ny with u(Nz) = 0. Hence if we fix
n>1

t e T\Nz_ and pass to an appropriate subsequence (depending in general on ),
we will have 2,(?) = z(t) in X as n — oo. As before from theorem 3.1 of
Papageorgiou [15] we get that v € G(z) = 54 (o()) and so g, = E(ajn)—i—vn Lyg=
E(a:) +ovin LYT, X*) as n —ooand v € G(z). Also ((gn,zn)) = ((E(xn), zn)) +
(Vn, Tp)a(r ), Loz, m) — ((A(2), %)) + (v, ) La(r, 1), La(T, 1) = ((9, %)) as n — oo.
Therefore T'(.) is pseudomonotone with respect to D(L).

Finally from hypotheses H(A)(iv) and H(F)(iv) we have for ¢ = E(a:) + v and
v € G(x):

((v,2)) = ((g(l‘)a )+ (9, %) pa(r, 1), L9(T, H)
> ellal? iy = eallellppx, = llealls

= (¢ = ea)llalf} iz xy — llealls



PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION INCLUSIONS 203

Since ez < ¢ (see hypothesis H(F)(iv)) we conclude that T'(.) is coercive. Now
rewrite problem (1) as the following equivalent operator inclusion:

L(x) + T(x) > h.

Since (L+T)(.) is surjective (see proposition 1) we deduce that the above operator
inclusion has a solution # € D(L). Therefore there exists & € W,,(T') such that

)+ At x(t)+ F(t,z(t)) 3 h(t) ae.on T
2(0) = z(b)

d

Remark 4. We should point out that hypotheses H(F)(i) and (ii) do not gen-
erally imply that the multifunction (¢,2) — F(¢,z) is measurable or even graph
measurable (see Papageorgiou[16] for counterexamples to this effect). Hence for
a measurable z : T — X, we cannot say that ¢ — F'(¢,2(¢)) is measurable which
means that we cannot a priori guarantee the nonemptiness of G(z) = S%(vx(.)).

5. EXAMPLES

In this section we work out two examples of parabolic PDE’s, illustrating the
applicability of theorem 1.

In both examples T=[0,b] and Z C R" is a bounded domain with a C'* bound-
ary I'. Let Dy = %,k €{1,2,..,N}and D = grad = (Dy)}_,.

(A) In the first example we consider the following multivalued periodic PDE:

N

5 E—Aaj—i—r;(sinx)Dkx—l—u(t,z) inTxZ
) u(t,z) € [ilt, z, (¢, 2)), f2(t, z,2(t, z))] ae. on T' X Z

z(0,2)==z(b,z) ae. on Z, z |pxr=0

Our hypotheses on the functions fi(¢, z, #) and f2(¢, z, ) are the following:
H(f): f1,f2: T x Z — R are functions such that

(i) for every measurable function # : 7 — R the functions

(t,z) — f1(t, z,2(2)), fa(t, z,2(2)) are both measurable,

(ii) # — fi(t, z,x), —fa(t, z, ) are both lower semicontinuous,

(iii) | f1(t,z,2) |,| f2(t, 2, 2) |[< aa(t,z) +e2 | & [P~ ae. on T x Z with

as € LY(T,L*(Z)) and ¢ > 0, and

(iv) for almost all (¢,2) € T'x 7 and all ® € R, fi(t, z, 2)x, falt, z,2)x > —c3
for some ¢3 > 0 (sign condition).

Remark 5. Problems like (5) arise when we deal with partial differential equa-
tions involving nonmonotone discontinuities; i.e. the perturbation term f(¢, z, #)
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is nonmonotone and discontinuous in . Then in order to guarantee the exis-
tence of solutions, we need to pass to a multivalued problem which is derived from
the original one by filling the gaps at the discontinuity points. Namely we in-
troduce the functions fi(¢,z,2) = ylin;f(t, z,y) and fu(t, z,2) = yli—nif(t, z,y) and

replace f(t,z,z) with the interval [fi(¢,z, %), fu(t, 2z, 2)]. Note that fi(¢,z,.) and
—fu(t, z,.) are both lower semicontinuous. If in addition we assume that for « :
7 — R measurable, the functions (t,2) — fi(t,z,2(z)) and (t,2) — fu(, z,2(2))
are measurable and if f(¢, z,.) satisfies a growth condition like H(f)(iii), then we

fall within the framework of problem (5), with H(f) valid (see Chang [6]).

Theorem 2. If hypothesis H(F) holds, N < 3, | r |< 1-I>:3\1 with A1 being the first
eigenvalue of (—A, H}(Z)) and h € L*(T x Z), then problem (5) has a solution

x € LF(T, HY(Z2)) N C(T, L*(Z)) with & € LYT, H~1(Z)).

Proof. In this case the evolution triple is X = H}(Z),H = L*(Z) and X* =

H~(Z). From the Sobolev embedding theorem we know that X embeds compactly

in H. In addition, since N < 3 we can see that X embeds compactly in L*(7).
Let A; : X — X™ be defined by

(A1(2),y) = /Z(Dx(z),Dy(z))RNdz, r,ye X

Evidently A;(.) is linear, continuous, monotone and (A4;(x), z) = ||D$||%2<Z RNy =

1-I>3\1 ||z[|?. Next let v : X — X* be defined by v(z)(.) = rzgzl(sin () Drx(.) €

L*(Z). We claim that v(.) is a compact map. So let x, — 2 in X as n — co.
We will show that v(#,) — v(x) in X* as n — oco. Suppose not. Then by passing
to a suitable subsequence if necessary, we may assume that there exist ¢ > 0 and
{Untn>1 C X with |Jy,|] <1 such that 0 < e < (v(2,) —v(x), yn), n > 1. We may
assume that y, — y in X and so y, — y in LY(Z) as n — oo. Then we have:

(o) = o)) = [ (60 )(Da () = Gsin ) (Di ()
= /Z(sin zp — sine)(Dyan)yn(2)dz + / (sinx)(Dpan)(yn — y)(2)dz

zZ

+ /Z(sin 2)( Dy (xy —x)y(2)dz + /Z(sin 2)(Dyx)(y — yn)(2)dz

Recall that | sin #,(z)—sin z(2) |<| £,(2) —2(z) |. So applying Holder’s inequality
with three factors we have (in what follows M;, i € {1,2,3,4,5}, are positive
constants):

| /Z(Sm wn —sin@)(Dpan)yn(2)dz |< ||lon — @l|Laz) [|2nlll]yn ]

S M1||l‘n — xHL“(Z) — 0 s
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| /Z(Sm 2)(Dran)(yn — y)(2)dz |< Mal|znllllyn — llz22)

< Ms||yn — yllLazy) — 0,
| /Z(sin 2)( Dy (2 —2)y(2))dz |— 0 as n — oo since Dy, X Dyzin LZ(Z)
and
| /Z(sin 2)(Drx)(y — yn)(2)dz |— 0 as n — oo since y, — y in L*(2)

as n — oo. Thus finally we have {(v(z,)—v(2),yn) — 0 as n — oo, a contradiction
to the choice of the y;, 5. So v(.) is compact as claimed. Also note that

N
| v(z) |=] rZ(sin () Drx(l) |< M4||D$||L2(ZVRN) < M|«

k=1

and
[ (o)) 1<) 7 | Z | [ o)D) ) |
slrlZ(/ | Dua(:) P d2)} ] vl
k=1 Z

hence (v(z),z) > — | r | ||z||*. Let A = A; + v. Since the sum of a maximal

monotone operator with a compact operator 1s pseudomonotone, we conclude that
A satisfies hypothesis H(A) (recall that | » |< ). Nextlet FF': T'x X — P.(H)
be defined by

1+)\

Ft,e)={ve H: fi(t,z,2(2)) <v(z) < fa(t,z,2(2)) a.e. on 7}

={veH: /fltzx ))dzg/ dz</f2tza: ))dz for every Borel

Recall that the Borel o-field of 7" is countably generated. Let {Cn}n21 be a field
of such generators. We have:

GrF(.,x)=Mp>1{(t,v) €T x H : / filt, z,e(2))dz < / v(z)dz

[ psonie) ;
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Thanks to Fubini’s theorem (see hypothesis H(f)(i)), we have that GrF(.,x) €
UT) x B(H), where ¢(T) is the Lebesgue o—field of T' and B(H) is the Borel
o—field of H. Thus the multifunction t — F(¢, ) is Lebesgue measurable. Also
because X embeds compactly in H, we can easily see that GrF(¢,.) is sequentially
closed in X, x X,,. Moreover since p > 2 and N < 3 from the Sobolev embedding
theorem we have that X embeds continuously in L*?=1(Z) so from H(f)(iii) we
get:
| F(t,z) |< as(?) —|—€2||3L‘||p_1 a.e. on T with @z € LY(T), ¢z > 0.

Finally, hypothesis H(f)(iv) implies that there exists ¢3 > 0 such that (v, ) > —¢3
for almost all t € T" all # € X and all v € F(¢, z).

We can now rewrite problem (5) as the following equivalent abstract evolution
inclusion:

{ #(t) + A(t, 2(t)) + F(t, (1)) > h(t) a.e. on T}
2(0) = z(b)

Here ﬁ(t) = h(t,.) € H. Invoking theorem 1 we conclude that (5) has at least one
solution x(.,.) € LP(T, HY{(Z)) N C(T, L*(Z)) with g—f € LYT, H~1(2)). O

(B) For the second example we consider the following nonlinear distributed
parameter control system with a priori feedback:

N
—— ZDkak(t, zye,De)+u(t,z) =h(t,z) in T x Z
=1

2(0,z) = x(b,z) a.e. on Z, x |pxr=10
lu(t, Mlzzczy < (@ 2@, )L cz))

We make the following hypotheses for the data of (6):
H(a): ar : T x Zx Rx RN — R, ke {1,2,..., N}, are functions such that:
(i) (t,2) — ar(t, z,z,n) is measurable,
(ii) (#,n) — ag(t, z, 2, n) is continuous,
(iii) ch\;l(ak(t, zyz,n) —ag(t,z,z,0)) (e —1},) > 0ae onT x Z,
for all € R and all 5,5 € RV,
(i) L ax(t,2,2,7) 1< Br(t,2) + x| @ =+l ae. on T x 2
with 51 € LY(T,7) and ¢; > 0, and
(v) ch\le ap(t, z,z,m)ne > c||n||P a.e. on T x Z.
H(y)y : T x Ry — R4 is a function such that
(i) t — (¢, r) is measurable,
(ii) r — y(t,r) is continuous, and
(iii) y(t,r) < Fa(t) a.e. on T with By € LI(T).



PERIODIC SOLUTIONS FOR NONLINEAR EVOLUTION INCLUSIONS 207

Theorem 3. If hypotheses H(a), H(v) hold and h € L*(T x Z) then problem (6)
has a solution x € LP (T, Wol’p(Z)) NC(T, L*(Z)) with g—f € LYT,W=b4(Z)).

Proof. In this case X = Wol’p(Z), H = L*(Z) and X* = W=14(Z). From the
Sobolev embedding theorem, we know that X embeds compactly in H. Let A :
T x X — X* be defined by:

Z/ (t,z,x, De)Dyy(z)dz, x,y € W&’p(z)~

o~

From Fubini’s theorem, we see that ¢ — (A(t,#),y) is measurable. Since y €
Wol’p(Z) is arbitrary, we deduce that ¢t — A(¢,z) is weakly measurable and so
by the Pettis measurability theorem ¢ — A(t,x) is measurable. Also by using
the dominated convergence theorem we can readily check that ¢ — A(¢, ) is
demicontinuous, while from theorem 3.1 of Gossez-Mustonen [10], we know that
z — A(t, z) is pseudomonotone. In addition from hypotheses H(a)(iv) and (v) we

have:

@L

[JA(t, )]« < 1( ) + cl||x||p a.e. on T with Bl € LI(T), ¢1 >0,
and (A(t,z),z) > ¢|lz|]’ a.e. on T with ¢> 0.

Next define ' : Tx X — Pyr(H)by F(t,2) ={u € H :|u|< (]| # |). Evidently
t — F(t,z) is measurable and GrF(¢,.) is sequentially closed in X, x X,,. Recall
thay X embeds compactly in H). Also | F(¢,z) |< Bz(t) a.e. on 1. Hence for
almost all t € T, all € X and allv € F(¢, ) we have (v, z) > Bz(t) |z | .

Then we can equivalently rewrite (6) in the form of the evolution inclusion (1)
with h()(.) = h(t,.) € H. Apply theorem 1 to get the desired solution. d

Along the same lines we can also consider higher order distributed parameter
control systems with a priori feedback. In what follows o = (ak)fc\;l 1s a multi-
index of positive integers. The number | o |= ch\le ay is the length of the
multi-index. Also let D* = D{*...DWN, n(x) = {DPz :| B |< m — 1} and &(x) =
{D%% :| & |= m}. The number of all multi-indices of length < m is given by

Ny = % and the number of all multi-indices of length < m — 1 is given by

Ny = % so N3 = Nj — Ny is the number of multi-indices of length exactly
m. We consider the following system:

g—f+ S (=)D Aat, 2, n(a(t, ), E(at, 2)))

lo|<m
(7) +u(t,z)=h(t,z) in T x Z
2(0,2) = (b, 2) a.e. on Z, D& |pyr=0for | B |<m—1
lu(t, Nzaczy < (& In(@, (¢ ) Lez,ry2)) ae on T.
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Our hypotheses on the data of (7) are the following:

H(A); : Ay : T x Z x R¥2 — RMs are functions such that

(i) (t,2) — Axlt, 2,1, &) is measurable,

(ii) (&) — An(t, z,m,€) is continuous,

(i) | Aalt, 2, 1,6) |< a(t, ) + ex(llP=" + €1 ae. on T x 7

with 61 S LQ(T X Z), c1 >0,

(V) 2 ajzm (Aalt, 2,m,8) — Aa(t, 2,1,8)(Ea — &) >0 ae. on T x H for all

ne RN & ¢ e RN+ and

(V) 2jaj<m Aall, 2,1, €)a > e2l[€|IP = cs(t, 2) ae. on T' x Z with ¢x >0

and ez € LY (T x 7).
Theorem 4. If hypotheses H(A);, H(y) hold and h € L*(T x Z) then problem
(7) has a solution x € LP(T, Wy P (Z))NC(T, L*(Z)) with g—f € LYT, WP (72)).

Proof. In this case the evolution triple consists of X = W;"*(Z), H = L*(Z) and
X* = WP (Z). Again X embeds compactly in H. The operator A : T'x X — X*
is given by

Aty = 3 / Aalt, 2 (2 (2)),E(e(2)) D (=) dz

|af<m

From theorem 1 of Browder [4] we know that A(Z,.) is pseudomonotone. Also let
F:T x X — Pyre(H) be defined by F(t,2) ={ve H:|v|<A(t, ||J:||W5n_1,p(z)).
Then the sequential closedness of GrF(t,.) in X, x Hy follows from the compact
embedding of W7 (Z) into W'~ "P(Z).
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