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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 197 { 212ON PERIODIC SOLUTIONS OF SYSTEMS OFLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONSIvan Kiguradze and Bed�rich P�u�zaAbstract. This paper deals with the system of functional-di�erential equationsdx(t)dt = p(x)(t)+ q(t);where p : C!(Rn) ! L!(Rn) is a linear bounded operator, q 2 L!(Rn), ! > 0and C!(Rn) and L!(Rn) are spaces of n-dimensional !-periodic vector functionswith continuous and integrable on [0; !] components, respectively. Conditions whichguarantee the existence of a unique !-periodic solution and continuous dependenceof that solution on the right hand side of the system considered are established.IntroductionLet us consider a system of functional-di�erential equations(0.1) dx(t)dt = p(x)(t) + q(t) ;and its particular case(0.2) dx(t)dt = P (t)x(� (t)) + q(t) ;where p : C!(Rn) ! L!(Rn) is a linear operator for which there is � 2 L!(R)such that(0.3) kp(x)(t)k � �(t)kxkC for t 2 R; x 2 C!(Rn) ;(0.4) P = (pik)ni;k=1 2 L!(Rn�n) ;1991 Mathematics Subject Classi�cation : 34K05, 34K10, 34K15, 34C25.Key words and phrases: linear functional-di�erentialsystem, di�erential systemwith deviatedargument, !-periodic solution.Received March 31, 1995.Supported by the grant 201/93/0452 of Grant Agency of the Czech Republic and by grant0953/1994 of Development Fund of Czech Universities.



198 I. KIGURADZE, B. P�U�ZA(0.5) q 2 L!(Rn) :As concerns the function � : R! R, it is measurable and satis�es the condition(0.6) � (t+ !) � �(t)! + � (t) ;where � is a function assuming only integer values.A vector function x : R! Rn is called !-periodic solution of the system (0.1)(of the system (0.2)) if it is absolutely continuous, periodic with the period !, i.e.x(t+ !) = x(t) ;and satis�es the system (0.1) (the system (0.2)) almost everywhere on R.In the case � (t) � t, the problem of !-periodic solutions of the system (0.2) andan analogous problem for a system of nonlinear ordinary di�erential equations aretreated in literature in su�cient details [2,5,8-10,13-15,21,23,25]. A general theoryof linear boundary value problems for systems of functional-di�erential equations,including periodic problems, is presented in monographs [1,22], a periodic problemis studied in [3,4,6,7,12,18,20,25]. The present paper is based on results of [11] andit establishes new su�cient conditions for existence of a unique !-periodic solutionof the system (0.1) (of the system (0.2)). Theorems of J. Kurzweil - Z. Voreltype [16,17,24] and Z. Opial type [19] on continuous dependence of the solutionmentioned on the right hand side of the system considered are proved.Throughout the paper, the following notation is used:Rn - space of n dimensional column vectors x = (xi)ni=1 with elements xi 2 R(i = 1; : : : ; n) and the norm kxk =Pni=1 jxij;Rn�n - space of n � n matrices X = (xik)ni;k=1 with elements xik 2 R (i; k =1; : : : ; n) and the norm kXk = nXi;k=1 jxikj ;Rn+ = f(xi)ni=1 2 Rn : xi � 0 (i = 1; : : : ; n)g ;Rn�n+ = f(xik)ni;k=1 2 Rn�n : xik � 0 (i; k = 1; : : : ; n)g ;if x; y 2 Rn and X;Y 2 Rn�n thenx � y () y � x 2 Rn+; X � Y , Y �X 2 Rn�n+ ;if x = (xi)ni=1 2 Rn and X = (xik)ni;k=1 2 Rn�n thenjxj = (jxij)ni=1; jXj = (jxikj)ni;k=1 ;det (X) - determinant of the matrix X; X�1 - matrix inverse to X;r(X) - spectral radius of the matrix X; E - unit matrix; � - zeromatrix;



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 199C([0; !];Rn)-space of continuous vector functions x : [0; !] ! Rn with thenorm kxkC = maxfkx(t)k : 0 � t � !g ;C!(Rn), where ! > 0 - space of continuous !-periodic vector functions x : R!Rn with the norm kxkC! = maxfkx(t)k : 0 � t � !g ;if x = (xi)ni=1 2 C!(Rn) then jxjC! = (kxikC! )ni=1 ;L([0; !];Rn)-space of vector functions x : R! Rn with elements summable on[0; !] with the norm kxkL = Z !0 kx(t)k dt ;L!(Rn) - space of !-periodic vector functions x : R ! Rn with elementssummable on [0; !] with the normkxkL! = Z !0 kx(t)k dt ;L!(Rn�n) - space of matrix functions X : R ! Rn�n with elements fromL!(R).If Z : R ! Rn�n is an !-periodic continuous matrix function with columnsz1; : : : ; zn and g : C!(Rn) ! L!(Rn) is a linear operator then by g(Z) we shallunderstand the matrix function with columns g(z1); : : : ; g(zn).x1. Existence and uniquenessIn the whole subsequent text, we will assume that p : C!(Rn) ! L!(Rn) isa linear operator satisfying the condition (0.3) and that P; q and � satisfy theconditions (0.4)-(0.6).For almost all t 2 R, let us denote by �(t) the integer part of the number �(t)!and set(1.1) �(t) = � (t)� �(t)! :Then in view of (0.6),(1.2) � 2 L!(R); 0 � �(t) < ! for t 2 R :For an arbitrary continuous vector function x : [0; !]! Rn, we denote by v!(x)the vector function de�ned by the equality(1.3) v!(x)(t) = x(t� j!) + t� j!! [x(0)� x(!)] for j! � t < (j + 1)!(j = 0; 1;�1; 2;�2; : : :)



200 I. KIGURADZE, B. P�U�ZAand set(1.4) p0(x)(t) = p(v!(x))(t) for t 2 [0; !] :Obviously, v! is a bounded linear operator acting from C([0; !];Rn) into C!(Rn).Therefore by (0.3), p0 : C([0; !];Rn)! L([0; !];Rn) is a linear operator satisfyingthe inequalitykp0(x)(t)k � �0(t)kxkC for t 2 [0; !]; x 2 C([0; !];Rn) ;where �0(t) = 3�(t).Let x be an arbitrary !-periodic solution of the system (0.1). Then in view of(1.3) and (1.4), the restriction of x to [0; !] is a solution of the periodic boundaryvalue problem(1.5) dx(t)dt = p0(x)(t) + q(t) ;(1.6) x(!) = x(0) :The inverse statement is obvious: the !-periodic continuation of an arbitrary so-lution of the boundary value problem (1.5), (1.6) represents an !-periodic solutionof the system (0.1). Therefore, Theorem 1.1 in the paper [11] impliesTheorem 1.1. The system (0.1) has a unique !-periodic solution if and only ifthe system of di�erential equations(1.7) dx(t)dt = p(v!(x))(t)with the boundary conditions (1.6) has only the trivial solution.The system (0.1) coincides with the system (0.2) if(1.8) p(x)(t) = P (t)x(� (t)) :From (1.4) in view of (1.1) and (1.3), we obtainp(v!(x))(t) = P (t)v!(x)(� (t)) = P (t)v!(x)(�(t)! + �(t)) == P (t)v!(x)(�(t)) = P (t)[x(�(t)) + �(t)! (x(0)� x(!))] for 0 � t � ! :Now, it is clear that the problem (1.7), (1.6) has only the trivial solution if andonly if the system(1.9) dx(t)dt = P (t)x(�(t))with the boundary conditions (1.6) has only the trivial solution. That is whyTheorem 1.1 implies



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 201Corollary 1.1. The system (0.2) has a unique !-periodic solution if and only ifthe problem (1.9), (1.6) has only the trivial solution.Let us introduce sequences of operators pk : C!(Rn) ! C([0; !];Rn) and ma-trices �k 2 Rn�n:(1.10) p0(x)(t) = x(t); pk(x)(t) = Z t0 p(v!(pk�1(x)))(s) ds (k = 1; 2; : : :) ;�1 = �; �k = k�1Xi=1 pi(E)(!) (k = 1; 2; : : :) :It is clear that �2 = Z !0 p(E)(s) ds :If the matrix �k is non-singular for some k � 2 then we set(1.11) pk;0(x)(t) = x(t); pk;m(x)(t) = pm(x)(t)��[p0(E)(t) + � � �+ pm�1(E)(t)]��1k pk(x)(!) :Theorem 1.2 in [11] and Theorem 1.1 implyTheorem 1.2. The system (0.1) has a unique !-periodic solution if there exist amatrix A 2 Rn�n+ and positive integers k � 2 and m such that the matrix �k isnon-singular,(1.12) r(A) < 1and(1.13) jpk;m(x)(t)j � AjxjC! for t 2 [0; !]; x 2 C!(Rn) :Corollary 1.2. Let the matrix�2 = Z !0 p(E)(s) dsbe non-singular and let there exist a matrix B 2 Rn�n+ such that(1.14) Z !0 jp(x)(s)jds � BjxjC! for x 2 C!(Rn)and(1.15) r(B + j��12 jB2) < 1 :



202 I. KIGURADZE, B. P�U�ZAThen the system (0.1) has a unique !-periodic solution.Proof. In view of (1.10), (1.11) and (1.14)p1(x)(t) = Z t0 p(x)(s) ds;p2;1(x)(t) = p1(x)(t) � ��12 Z !0 p(v!(p1(x)))(s)ds;and jp2;1(x)(t)j � BjxjC! + j��12 jBjv!(p1(x))jC! for t 2 [0; !]; x 2 C!(Rn) :On the other hand, by (1.3)v!(p1(x))(t) = Z t0 p(x)(s) ds � t! Z !0 p(x)(s) ds == (1� t! ) Z t0 p(x)(s) ds � t! Z !t p(x)(s) ds :Thereforejv!(p1(x))(t)j � Z !0 jp(x)(s)j ds � BjxjC! for t 2 [0; !]; x 2 C!(Rn)and jp2;1(x)(t)j � (B + j��12 jB2)jxjC! for t 2 [0; !]; x 2 C!(Rn) :Consequently, the condition (1.13) is satis�ed for k = 2 and m = 1, where thematrix A = B + j��12 jB2 satis�es the inequality (1.12). �For arbitrary matrix function V 2 L!(Rn�n), set[V (t)]�;0 = �; [V (t)]�;1 = V (t); [V (t)]�;i+1 =V (t) Z �(t)0 [V (s)]�;i ds (i = 1; 2; : : :) :Then Theorem 2.2 in [11] and Theorem 1.1 imply the followingCorollary 1.3. Let there exist positive integers k � 2 andm such that the matrix�k = k�1Xi=1 Z !0 [P (s)]�;i dsis non-singular and r(Ak;m) < 1 ;whereAk;m = Z !0 [jP (s)j]�;m ds+ (E + m�1Xi=0 Z !0 [jP (s)j]�;i ds)j��1k j Z !0 [jP (s)j]�;k ds :Then the system (0.2) has a unique !-periodic solution.For k = 2 and m = 1, Corollary 1.3 has the following form



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 203Corollary 1.4. Let the matrix�2 = Z !0 P (s) dsbe non-singular and r(A2;1) < 1;where A2;1 = Z !0 jP (s)jds+ j��12 j Z !0 (jP (s)j Z �(s)0 jP (t)j dt) ds:Then the system (0.2) has a unique !-periodic solution.Together with (0.1) and (0.2) under the conditions (0.3) - (0.6), let us considerdi�erential systems(1.16) dx(t)dt = "p(x)(t) + q(t)and(1.17) dx(t)dt = "P (t)x(� (t)) + q(t) ;where " is a small positive parameter.Corollary 1.5. If the matrix �2 = Z !0 p(E)(s) dsis non-singular then there is "0 > 0 such that the system (1.16) has a unique!-periodic solution for each " 2]0; "0[.Proof. Since the operator p : C!(Rn) ! L!(Rn) is bounded, there exists amatrix B 2 Rn�n+ satisfying the inequality (1.14). LetA = B + j��12 jB2and(1.18) "0 = 1r(A) :Set p"(x)(t) = "p(x)(t);�2;" = Z !0 p"(E)(s) ds; B" = "B :Then �2;" = "�2 is non-singular for each " > 0. On the other hand, in view of(1.14) and (1.18), Z !0 jp"(x)(s)j ds � B"jxjC! for x 2 C!and r(B" + j��12;"jB2" ) = "r(A) < 1 for " 2]0; "0[ :In virtue of Corollary 1.2, the last two inequalities yield that (1.16) has a unique!-periodic solution for each " 2]0; "0[. �For the system (1.17), Corollary 1.5 takes the following form:



204 I. KIGURADZE, B. P�U�ZACorollary 1.6. If the matrix Z !0 P (s) dsis non-singular, then there is "0 > 0 such that the system (1.17) has a unique!-periodic solution for each " 2]0; "0[.As we noticed above, the !-periodic continuation of an arbitrary solution of theproblem (1.7), (1.6) represents an !-periodic solution of the system(1.19) dx(t)dt = p(x)(t) :That is why Corollary 1.5 in [11] impliesCorollary 1.7. Let there exist a matrix function P0 2 L!(Rn) such that theequality(1.20) �Z ts P0(�) d��P0(t) = P0(t)�Z ts P0(�) d��holds for almost all s and t 2 I, let the matrix(1.21) A0 = E � exp�Z !0 P0(s) ds�be non-singular and let the following inequality be satis�ed for arbitrary !-periodicsolution of the system (1.19):Z tt�! jA�10 exp�Z ts P0(�) d�� [p(x)(s) � P0(s)x(s)]j ds � AjxjC for t 2 [0; !] ;where A 2 Rn�n+ is a matrix satisfying the condition (1.12). Then the system(0.1) has a unique !-periodic solution.If p(x)(t) = P (t)x(� (t)), then any !-periodic solution of the system (1.19)represents also a solution of the system (1.9). Therefore for each such solution, wehave jp(x)(t)� P0(t)x(t)j == j(P (t)� P0(t))x(�(t)) + P0(t) Z �(t)t P (s)x(�(s))dsj � Q(t)jxjC! ;where(1.22) Q(t) = jP (t)� P0(t)j+ jP0(t)jj Z �(t)t jP (s) jdsj :In virtue of the fact mentioned, Corollary 1.7 implies



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 205Corollary 1.8. Let there exist a matrix function P0 2 L!(Rn) such that theequality (1.20) holds for almost all s and t 2 I, let the matrix (1.21) be non-singular and(1.23) Z tt�! jA�10 exp�Z ts P0(�) d�� jQ(s) ds � A for t 2 [0; !] ;where Q is the matrix function de�ned by the equality (1.22) and let A 2 Rn�n+be the matrix satisfying the condition (1.12). Then the system (0.2) has a unique!-periodic solution.Corollary 1.9. Let there be numbers �i 2 f�1; 1g, b0i > 0 and bik 2 R+ (i; k =1; : : : ; n) such that the real parts of the eigenvalues of the matrix(1.24) (bik � �ikb0i)ni;k=1 ;where �ik is the Kronecker's delta symbol, are negative, and the inequalities(1.25) �ipii(t) � b0i (i = 1; : : : ; n)and(1.26) (1� �ik)jpik(t)j+ jpii(t)j �����Z �(t)t jpik(s)jds����� � bik (i; k = 1; : : : ; n)are satis�ed almost everywhere on [0; !]. Then the system (0.2) has a unique!-periodic solution.Proof. It can be shown easily that the real parts of the eigenvalues of the matrix(1.24) are negative if and only if the matrix(1.27) A = �bikb0i�ni;k=1satis�es the inequality (1.12).Let us denote by P0(t) the diagonal matrix with the diagonal elements p11(t);: : : ; pnn(t). Then in view of (1.25), the matrix A0 de�ned by equality (1.21) isnon-singular,(1.28) A�10 exp�Z ts P0(�) d�� = (�ikgi(t; s))ni;k=1 ;where gi(t; s) = exp�Z ts pii(�) d���1� exp�Z !0 pii(�)d����1



206 I. KIGURADZE, B. P�U�ZAand Z tt�! jgi(t; s)j � �ib0i Z tt�! pii(s)jgi(t; s)j ds == 1b0i ����1� exp�Z tt�! pii(�) d������ ����1� exp�Z !0 pii(�) d�������1 for t 2 [0; !] :But since pii is !-periodic,Z tt�! pii(�) d� = Z !0 pii(�) d� :Therefore(1.29) Z tt�! jgi(t; s)j ds � 1b0i for t 2 [0; !] :On the other hand in view of (1.22) and (1.26), the unequality(1.30) Q(t) � (bik)ni;k=1is satis�ed almost everywhere on [0; !].(1.27) - (1.30) yield the inequality (1.23). Consequently, all assumptions ofCorollary 1.7 are satis�ed. �The requirement of negativity of the real parts of the eigenvalues of the matrix(1.24) is optimal and it can't be weakened. Indeed, let pii = 0 (i = 1; : : : ; n) andlet the matrix (1.24) have at least one eigenvalue with nonnegative real part. Thenthe matrix (1.27) satis�es the inequalityr(A) � 1 :Therefore there are complex numbers � and ci (i = 1; : : : ; n) such thatj�j � 1; nXi=1 jcij > 0and nXk=1 bikck = �b0ici (i = 1; : : : ; n) :Therefore nXk=1�ibikjckj = b0ijcij (i = 1; : : : ; n) ;where �i 2 [0; 1] (i = 1; : : : ; n). Consequently, (jcij)ni=1 represents a non-trivial!-periodic solution of the di�erential systemdx(t)dt = P (t)x(t) ;where P (t) � (�ibik � �ikb0i)ni;k=1. On the other hand, the considered systemsatis�es all assumptions of Corollary 1.9 except the negativity of the real parts ofthe eigenvalues of the matrix (1.24).



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 207x2. Continuous dependence of solution onthe right hand side of differential systemIn this section, statements concerning continuous dependence of periodic solu-tions of the system (0.1), (0.2) on its right hand side are proved.For each positive integer k, let us consider the systems(2.1) dx(t)dt = pk(x)(t) + qk(t)and(2.2) dx(t)dt = Pk(t)x(�k(t)) + qk(t) ;where pk : C!(Rn)! L!(Rn) is a linear operator for which there exists a function�k 2 L!(R) such thatkpk(x)(t)k � �k(t)kxkC! for t 2 R; x 2 C!(Rn)and qk 2 L!(Rn); Pk 2 L!(Rn�n) :As concerns �k : R! R, it is measurable and it satis�es the unequality�k(t+ !) = �k(t)! + �k(t) ;where �k is a function assuming integers values only. Let us denote by �k theinteger part of the number �k(t)! and set�k(t) = �k(t) � �k(t)! :Let g : C!(Rn) ! L!(Rn) be an arbitrary linear bounded operator and let usdenote by jjj � jjj its norm and by M!g a set of all absolutely continuous !-periodicvector functions y : R! Rn allowing the following representation:y(t) = z(0) + Z t0 g(z)(s) ds � t! Z !0 g(z)(s) ds for t 2 [0; !] ;where(2.3) z 2 C!(Rn); kzkC! = 1 :



208 I. KIGURADZE, B. P�U�ZATheorem 2.1. Let the system (0.1) have a unique !-periodic solution x,(2.4)sup�k Z t0 [pk(y)(s) � p(y)(s)] dsk : t 2 [0; !]; y 2M!pk�! 0 for k! +1and let(2.5) limk!+1�(1 + jjjpkjjj) Z t0 [pk(y)(s) � p(y)(s)] ds� = 0 uniformly on [0; !]for any absolutely continuous !-periodic function y : R! Rn. Let further(2.6) limk!+1�(1 + jjjpkjjj) Z t0 [qk(s) � q(s)] ds� = 0 uniformly on [0; !] :Then there is a positive integer k0 such that for each k � k0 the system (2.1) alsohas a unique !-periodic solution xk and(2.7) limk!+1 kx� xkkC! = 0 :Proof. Let p0 : C([0; !];Rn) ! L([0; !];Rn) be the operator de�ned by (1.3),(1.4) and(2.8) p0k(y)(t) = pk(v!(y))(t) for y 2 C(I;Rn) :Let us denote by Mp0k the set of all absolutely continuous vector functionsy : [0; !]! Rn allowing the representation(2.9) y(t) = z(0) + Z t0 pk(v!(z))(s) ds ;where(2.10) z 2 C([0; !];Rn); kzkC = 1 :According to Theorem 1.4 in the paper [11], it is su�cient to verify the followingconditions for completing the proof:(2.11)sup�k Z t0 [p0k(y)(s) � p0(y)(s)] dsk : t 2 [0; !]; y 2Mp0k�! 0 for k ! +1 ;(2.12) limk!+1�(1 + jjjp0kjjj) Z t0 [qk(s) � q(s)] ds� = 0 uniformly on [0; !]



ON PERIODIC SOLUTIONS OF SYSTEMS : : : 209and(2.13) limk!+1�(1 + jjjp0kjjj) Z t0 [p0k(y)(s) � p0(y)(s)] ds� = 0for any absolutely continuous y : [0; !]! Rn.In view of (1.3), kv!(y)kC! � 3kykC :Therefore (2.8) implies(2.14) jjjp0kjjj � 3jjjpkjjj (k = 1; 2; : : :) :Consequently, (2.6) yields the condition (2.12).Let y : [0; !]! Rn be arbitrary absolutely continuous function. Then ~y = v!(y)is an !-periodic absolutely continuous function. On the other hand in view of (1.4)and (2.8),(2.15) Z t0 [p0k(y)(s) � p0(y)(s)] ds = Z t0 [pk(~y)(s) � p(~y)(s)] ds:From this, in view of (2.5) and (2.14), condition (2.13) follows.Thus it remains to show that the condition (2.11) is satis�ed. Let k be apositive integer and y 2Mp0k . Then the representation (2.9) with z satisfying thecondition (2.10) is valid.If we set ~y(t) = v!(y)(t); ~z(t) = v!(z)(t) ;then we have ~y(t) = ~z(0) + Z t0 pk(~z)(s) ds � t! Z !0 pk(~z)(s) dsand(2.16) k~zkC! � 3 :If ~z(t) � 0 then y(t) � ~y(t) � 0. If ~z(t) 6� 0 theny0 = k~zk�1C! ~y 2M!pk :Therefore (2.15) and (2.16) yieldj Z t0 [p0k(y)(s) � p0(y)(s)] dsj � 3j Z t0 [pk(y0)(s) � p(y0)(s)] dsj for t 2 [0; !] :From this, in view of (2.4), condition (2.11) follows. �The theorem just proved implies



210 I. KIGURADZE, B. P�U�ZACorollary 2.1. Let the system (0.1) have a unique !-periodic solution x and letthe following condition be satis�ed for any absolutely continuous !-periodic vectorfunction y : R! Rn:limk!+1 Z t0 [pk(y)(s) � p(y)(s)] ds = 0 uniformly on [0; !] :Let further limk!+1 Z t0 [qk(s) � q(s)]ds = 0 uniformly on [0; !]and let there be a summable function � : [0; !]! R+ such thatkpk(y)(t)k � �(t)kykC!almost everywhere on [0; !] for any y 2 C!(Rn). Then the conclusion of Theorem2.1 holds.The restriction of an !-periodic solution of the systems (0.2) and (2.2) to [0; !]is a solution of di�erential systems(2.17) dx(t)dt = P (t)x(�(t)) + q(t)and(2.18) dx(t)dt = Pk(t)x(�k(t)) + qk(t)with the boundary conditions (1.6), respectively. On the other hand, !-periodiccontinuations of solutions of the problems (2.17), (1.6) and (2.18), (1.6) representsolutions of the systems (0.2) and (2.2), respectively. That is why Corollary 2.1impliesCorollary 2.2. Let the system (0.2) have a unique !-periodic solution x,limk!+1 Z t0 [Pk(s) � P (s)] ds = 0 uniformly on [0; !] ;limk!+1 Z t0 [qk(s) � q(s)] ds = 0 uniformly on [0; !]and ess supfj�k(t)� �(t)j : t 2 Ig ! 0 for k ! +1 :Further let there be a summable function � : [0; !]! R+ such thatkPk(t)k � �(t) (k = 1; 2; : : :)almost everywhere on [0; !]. Then there is a positive integer k0 such that for eachk � k0, the system (2.2) has a unique !-periodic solution xk and the equality (2.7)is satis�ed.
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