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ON PERIODIC SOLUTIONS OF SYSTEMS OF
LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

IvaAN KIGURADZE AND BEDRICH PUZaA

ABSTRACT. This paper deals with the system of functional-differential equations

dz(t)
dt

= p(=)(t) + a(t),

where p : Cy,(R") — L, (R"™) is a linear bounded operator, ¢ € L, (R"), w > 0
and Cy,(R") and L, (R™) are spaces of n-dimensional w-periodic vector functions
with continuous and integrable on [0, w] components, respectively. Conditions which
guarantee the existence of a unique w-periodic solution and continuous dependence
of that solution on the right hand side of the system considered are established.

INTRODUCTION

Let us consider a system of functional-differential equations

dz(t
(0.1) W b))+ at0)
and its particular case
dz(t)

(0.2)

0 paye(r(v) +q1)
where p : Cy(R™) = L,(R") is a linear operator for which there is n € L, (R)
such that

(0.3) (@) <n(@)llzlle  fort € R,z € Cu(R?),

(0.4) P = (pir)i =1 € Lw(R"7),
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(0.5) q € Ly(R™).
As concerns the function 7 : R — R, it is measurable and satisfies the condition
(0.6) Tt +w) = pt)w+ 7(t),

where p is a function assuming only integer values.
A vector function # : R — R” is called w-periodic solution of the system (0.1)
(of the system (0.2)) if it is absolutely continuous, periodic with the period w, i.e.

r(t+w) =),

and satisfies the system (0.1) (the system (0.2)) almost everywhere on R.

In the case 7(t) = t, the problem of w-periodic solutions of the system (0.2) and
an analogous problem for a system of nonlinear ordinary differential equations are
treated in literature in sufficient details [2,5,8-10,13-15,21,23,25]. A general theory
of linear boundary value problems for systems of functional-differential equations,
including periodic problems, is presented in monographs [1,22], a periodic problem
is studied in [3,4,6,7,12,18,20,25]. The present paper is based on results of [11] and
it establishes new sufficient conditions for existence of a unique w-periodic solution
of the system (0.1) (of the system (0.2)). Theorems of J. Kurzweil - Z. Vorel
type [16,17,24] and Z. Opial type [19] on continuous dependence of the solution
mentioned on the right hand side of the system considered are proved.

Throughout the paper, the following notation is used:

R™ - space of n dimensional column vectors = (#;)7_, with elements z; € R
(i=1,...,n) and the norm

lall = S0 i

R”*” - space of n x n matrices X = (x;;),_; with elements z;; € R (i,k =

XN =D el

i,k=1

1,...,n) and the norm

R} ={(z;)))., eR":; >0  (i=1,...,n)};
RY" = {(xie)fjmy ER M iy >0 (k=1,...,n)};

if z,y€ R” and X,Y € R"*" then
r<y<—y—zeR}, X<Y &Y -XeR";
ife=(2;)l_; €eR" and X = (xik)?,kzl € R™"*™ then
2| = (leil)iz, [XT= (wirl)ir=1;

det (X) - determinant of the matrix X; X~! - matrix inverse to X;
7(X) - spectral radius of the matrix X; E - unit matrix; © - zero
matrix;
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C([0,w]; R™)-space of continuous vector functions # : [0,w] — R™ with the
norm
llzllc = max{[lz(t)[[: 0 <t <w}s

Cyu(R"™), where w > 0 - space of continuous w-periodic vector functions z : R —
R” with the norm
llz]le., = max{lle(@)|| : 0 <t <w},

if # = ()1~ € Cy(R") then

lzlc, = (lzille, )iz ;

L([0,w]; R™)-space of vector functions # : R — R”™ with elements summable on
[0,w] with the norm

Lz =/0 e (1)) i

L, (R™) - space of w-periodic vector functions # : R — R"™ with elements
summable on [0,w] with the norm

el =/0 e (1) i

Ly (R™*") - space of matrix functions X : R — R™*" with elements from
Ly(R).

If Z:R — R"" is an w-periodic continuous matrix function with columns
Z1,.. ., 2 and g 1 Cy(R™) = L,(R™) is a linear operator then by ¢(7) we shall
understand the matrix function with columns g(z1),...,9(zn).

§1. EXISTENCE AND UNIQUENESS

In the whole subsequent text, we will assume that p : C,(R") = L,(R") is
a linear operator satisfying the condition (0.3) and that P,¢ and r satisfy the
conditions (0.4)-(0.6).

For almost all ¢ € R, let us denote by v(#) the integer part of the number iwﬁ
and set

(1.1) CH)y=7@1) —v(t)w.
Then in view of (0.6),
(1.2) CeLy(R), 0<((t)<w forteR.

For an arbitrary continuous vector function z : [0,w] — R™, we denote by v, (x)
the vector function defined by the equality

t— jw

v (2)(t) = 2(t — jw) + [(0) — z(w)]  for jw <t < (j+ Nw
(=0,1,-1,2,-2...)

(1.3)
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and set

(1.4) po(2)(t) = pluy(2))(t) fort € [0,w].

Obviously, v, is a bounded linear operator acting from C([0,w]; R™) into C,, (R").
Therefore by (0.3), po : C([0,w]; R™) = L([0,w]; R™) is a linear operator satisfying
the inequality

lpo(2) DI < mo(@)llz]le for t €[0,w], = € C([0,w], R?),

where no(t) = 3n(t).

Let & be an arbitrary w-periodic solution of the system (0.1). Then in view of
(1.3) and (1.4), the restriction of z to [0,w] is a solution of the periodic boundary
value problem

dz(t)

(15) " = pol) 1) + a)

(1.6) z(w) = 2(0).

The inverse statement is obvious: the w-periodic continuation of an arbitrary so-
lution of the boundary value problem (1.5), (1.6) represents an w-periodic solution
of the system (0.1). Therefore, Theorem 1.1 in the paper [11] implies

Theorem 1.1. The system (0.1) has a unique w-periodic solution if and only if
the system of differential equations

(17 20 p )

with the boundary conditions (1.6) has only the trivial solution.
The system (0.1) coincides with the system (0.2) if

(1.8) p(z)(t) = P(t)z(7(t)).
From (1.4) in view of (1.1) and (1.3), we obtain

Pl () (1) = Py (@)(r(0) = P()uae) (v()e + (1)) =
= P (@)(C(0) = POlc) + <2

W

((0) —z(w))] for0<t<w.

Now, it is clear that the problem (1.7), (1.6) has only the trivial solution if and
only if the system

(19) )

with the boundary conditions (1.6) has only the trivial solution. That is why
Theorem 1.1 implies
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Corollary 1.1. The system (0.2) has a unique w-periodic solution if and only if
the problem (1.9), (1.6) has only the trivial solution.

Let us introduce sequences of operators p* : C,, (R") — C([0,w]; R") and ma-
trices A, € R**"7:

(1.10) po(x)(t)zx(t),pk(x)(t)Z/op(vw(pk_l(l‘)))(S)dS (k=1,2,...),

It 1s clear that

Ay = /Ow p(E)(s) ds.

If the matrix Ay is non-singular for some k > 2 then we set

PO (1) = x (1), P () (1) = p™ () (1)

(1.11) e
~[P"(E)(t) + -+ p"THE))]AL P (@) (w) -

Theorem 1.2 in [11] and Theorem 1.1 imply

Theorem 1.2. The system (0.1) has a unique w-periodic solution if there exist a
matrix A € R}™" and positive integers k > 2 and m such that the matrix Ay is
non-singular,

(1.12) r(4) < 1
and
(1.13) "™ (@) ()| < Alz|c,  fort €[0,w], z € Cu(R™).

Corollary 1.2. Let the matrix
As :/ p(F)(s)ds
0
be non-singular and let there exist a matrix B € R}*" such that

(1.14) /Ow lp(z)(s)|ds < Blz|cw forxz € Cy(R")

and

(1.15) r(B+|A7YB?) < 1.
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Then the system (0.1) has a unique w-periodic solution.

Proof. In view of (1.10), (1.11) and (1.14)

[ v s
| r ' @mas

0

Y= [
0
P2 @) () = pt(x) (1) — AF
and
P> (2) ()] < Blelew + [A7[Bluw (p' ()] cw for t € [0,w], 2 € C(R").
On the other hand, by (1.3)

Therefore
oo (P () (1)) < / Ip(2)(s)] ds < Blale. fort € [0,w],x € Cu(R?)

and
PP )0 < (B + AT B elew for t € [0,u], € Cu(RY).

Consequently, the condition (1.13) is satisfied for & = 2 and m = 1, where the
matrix A = B+ |A;!|B? satisfies the inequality (1.12). O

For arbitrary matrix function V' € L, (R"*"), set

[Vt)lco=0,[V{tlca = V() [V{H]ci+r =

¢(®)
V(t)/ V(s)eids (i=1,2,...).
0
Then Theorem 2.2 in [11] and Theorem 1.1 imply the following

Corollary 1.3. Let there exist positive integers k > 2 and m such that the matrix

is non-singular and

where

A = [ 1PONmts+ @+ Y [ 1PEIsaaz ] [ 1POcsds.

Then the system (0.2) has a unique w-periodic solution.

For £ = 2 and m = 1, Corollary 1.3 has the following form
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Corollary 1.4. Let the matrix

AzzﬂfP@ﬁk

be non-singular and

T(Azyl) < 1,

A2,1=/| 9lds+ A7 1|/ (1P(s) |/

Then the system (0.2) has a unique w-periodic solution.

Together with (0.1) and (0.2) under the conditions (0.3) - (0.6), let us consider

differential systems

where

)| dt)d

(1.16) B~ cp@)) + (1)
and
(1.17) PO cp)a(r) + (1),

where ¢ is a small positive parameter.

Corollary 1.5. If the matrix

As :/ p(F)(s)ds
0
is non-singular then there is €9 > 0 such that the system (1.16) has a unique
w-periodic solution for each ¢ €]0,eg].

Proof. Since the operator p : C,(R"?) — L,(R™) is bounded, there exists a
matrix B € R} satisfying the inequality (1.14). Let

A= B+|A;YB?

and
1
1.1 = .
— e
Set

pe(@)(t) = ep(a)(t), As e = / * o (B)(s)ds, B. = B

Then As . = €Ay is non-singular for each € > 0. On the other hand, in view of
(1.14) and (1.18),

/ |p:(x)(s)| ds < B:|z|c, forzeC,
0

and

r(B: + |A2_i|B€2) =er(A) < 1for e €]0, 9[-

In virtue of Corollary 1.2, the last two inequalities yield that (1.16) has a unique
w-periodic solution for each ¢ €]0, g¢]. O

For the system (1.17), Corollary 1.5 takes the following form:
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/Ow P(s)ds

is non-singular, then there is g > 0 such that the system (1.17) has a unique
w-periodic solution for each ¢ €]0,eg].

Corollary 1.6. If the matrix

As we noticed above, the w-periodic continuation of an arbitrary solution of the
problem (1.7), (1.6) represents an w-periodic solution of the system

(1.19) — p(@)(1).

That is why Corollary 1.5 in [11] implies

Corollary 1.7. Let there exist a matrix function Py € L,(R") such that the
equality

(1.20) ( / Poe) d&) Pyft) = Po(t) ( / Pe) d&)

holds for almost all s and t € I, let the matrix

(1.21) Ay = E —exp </0w Po(s) ds)

be non-singular and let the following inequality be satisfied for arbitrary w-periodic
solution of the system (1.19):

/;w [Ag " exp (/t Po(€) d&) [p(x)(s) — Po(s)x(s)]| ds < Alz|c for t €[0,u],

where A € R}™" is a matrix satisfying the condition (1.12). Then the system
(0.1) has a unique w-periodic solution.

If p(x)(t) = P(t)=z(r(t)), then any w-periodic solution of the system (1.19)
represents also a solution of the system (1.9). Therefore for each such solution, we
have

p(2)(t) = Po(t)e(t)] =
¢(t)
ﬂwm—mmnmm+%ml’fwnmwwQOm@,
where
¢(t)
(122) Qw=wpw—fum+¢%wnl |P(s) [ds]

In virtue of the fact mentioned, Corollary 1.7 implies
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Corollary 1.8. Let there exist a matrix function Py € L,(R") such that the
equality (1.20) holds for almost all s and t € I, let the matrix (1.21) be non-
singular and

(1.23) /tiw | Ayt exp (/t Py(€) dg) |Q(s)ds < A fort €[0,w],

where @ is the matrix function defined by the equality (1.22) and let A € R}™"
be the matrix satisfying the condition (1.12). Then the system (0.2) has a unique
w-periodic solution.

Corollary 1.9. Let there be numbers o; € {—1,1}, bg; > 0 and by, € Ry (i, k =
1,...,n) such that the real parts of the eigenvalues of the matrix

(1.24) (bir — Ginboi) =1,
where ;1 is the Kronecker’s delta symbol, are negative, and the inequalities
(125) O'Z'p“'(t) ZboZ (i: 1,...,77,)

and

¢(t)
(1.26) (1—5ik)|Pik(t)|+|Pn’(t)|‘/t pi()lds| < b (i k=1,...,n)

are satisfied almost everywhere on [0,w]. Then the system (0.2) has a unique
w-periodic solution.

Proof. It can be shown easily that the real parts of the eigenvalues of the matrix
(1.24) are negative if and only if the matrix

b \"
(1.27) A= (-’“)
boi k=1

satisfies the inequality (1.12).
Let us denote by Py(t) the diagonal matrix with the diagonal elements py;(t),
.y Pan(t). Then in view of (1.25), the matrix Ay defined by equality (1.21) is
non-singular,

(1.28) Ay texp (/; Py(£) d&) = (0irgi(t, s))i =1

atos) = e [ i) ie) [1=ewp ([ putcrac)]

where .
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and

t o t
| et < [ patolates)lds =
t—w 07 Jt—w

e ([ @)oo ([ uterae)|

But since p;; 1s w-periodic,

/tiw pii(§) d§ = /0‘” pii(§) dE .

for t € [0,w].

Therefore
¢
1
(1.29) / lg:(t,s)| ds < ™ for t € [0,w].
t—w 0%
On the other hand in view of (1.22) and (1.26), the unequality
(1.30) Q(t) < (bik)} =1

is satisfied almost everywhere on [0, w].
(1.27) - (1.30) yield the inequality (1.23). Consequently, all assumptions of
Corollary 1.7 are satisfied. a

The requirement of negativity of the real parts of the eigenvalues of the matrix
(1.24) is optimal and it can’t be weakened. Indeed, let p;; =0 (i = 1,...,n) and
let the matrix (1.24) have at least one eigenvalue with nonnegative real part. Then
the matrix (1.27) satisfies the inequality

r(A) > 1.

Therefore there are complex numbers A and ¢; (¢ = 1,...,n) such that

AL Y el >0
i=1

and .
Zbikck:/\boici (i:l,...,n).
k=1
Therefore .
Zmbik|ck|:b0i|ci| (i:l,...,n),
k=1
where n; € [0,1] (¢ = 1,...,n). Consequently, (|e;|)?_, represents a non-trivial
w-periodic solution of the differential system
dz(t)
= P{t)x(t
W) Py,

where P(t) = (nibsy — 5ikbOi)Zk:1~ On the other hand, the considered system
satisfies all assumptions of Corollary 1.9 except the negativity of the real parts of
the eigenvalues of the matrix (1.24).
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§2. CONTINUOUS DEPENDENCE OF SOLUTION ON
THE RIGHT HAND SIDE OF DIFFERENTIAL SYSTEM

In this section, statements concerning continuous dependence of periodic solu-
tions of the system (0.1), (0.2) on its right hand side are proved.
For each positive integer k, let us consider the systems

2.1) PO pe@)) + el
and
(2:2) T = Py 0) + uelt)

where pi : Cy (R"?) — L, (R™) is a linear operator for which there exists a function
Nk € Ly (R) such that

Ipx (&) DI < e @)l[xlle,  fort € R,z € Cu(R)

and
qx € Lo (R™), Pi € Ly (R™™).

As concerns 73 : R = R it is measurable and it satisfies the unequality
Tt +w) = p(Ow + 73 (),

where pg is a function assuming integers values only. Let us denote by vy the

Tk (t)

and set

integer part of the number
Ck (t) = Tk(t) — I/k(t)w .
Let g : Cu(R") = Ly (R") be an arbitrary linear bounded operator and let us

denote by ||| ||| its norm and by M a set of all absolutely continuous w-periodic
vector functions y : R — R” allowing the following representation:

t

y(t) = z(0) —1—/0 g(z)(s)ds — — /Ow g(z)(s)ds fort e [0,w],

W

where

(2.3) 2 € CLRY), |llle, = 1.
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Theorem 2.1. Let the system (0.1) have a unique w-periodic solution x,
(2.4)
sup

{wﬁm@wwm@@uwwem%ymwﬁan for k - +oc
and let

(25) QHWM%M@@wwm@=0mmMmmd

lim
k—+o0

for any absolutely continuous w-periodic function y : R — R”. Let further

20) tim (4l [ ()~ el]ds) =0 wniformiy on 0,41

Then there is a positive integer kq such that for each k > ko the system (2.1) also
has a unique w-periodic solution x; and

(2.7) lim ||z — #xl|lc, =0.

k—+o0

Proof. Let py : C([0,w]; R") = L([0,w]; R") be the operator defined by (1.3),
(1.4) and

(2.8) pok(¥)(t) = pr(ve(y))(t)  forye C(I,R™).

Let us denote by M,,, the set of all absolutely continuous vector functions
y : [0,w] — R™ allowing the representation

(2.9) 1) = 200+ [ pelra2)(5) ds,
where
(2.10) 2 e O([0,w]; RY), ||2]lc = 1.

According to Theorem 1.4 in the paper [11], it is sufficient to verify the following
conditions for completing the proof:

(2.11)
sup {H/o [por(v)(s) — po(y)(s)]ds|| : t € [0,w],y € Mpok} —0 fork — 400,

(2.12) J%@Hmm%m@ww@=0mmmMMM
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and

et (@) [ Boro)e) - pol)eds) =0

for any absolutely continuous y : [0,w] — R™.
In view of (1.3),

v ()l < 3llylle -
Therefore (2.8) implies

(2.14) porl Il < 3lllpslll - (k=1,2,...).

Consequently, (2.6) yields the condition (2.12).
Let y : [0,w] = R™ be arbitrary absolutely continuous function. Then § = v, (y)
is an w-periodic absolutely continuous function. On the other hand in view of (1.4)

and (2.8),

(2.15) A@m%ﬁﬂMM%®=AM@®—MMﬂ®

From this, in view of (2.5) and (2.14), condition (2.13) follows.

Thus it remains to show that the condition (2.11) is satisfied. Let k& be a
positive integer and y € M,,,. Then the representation (2.9) with z satisfying the
condition (2.10) is valid.

If we set

then we have

and
(2.16) l1Z]lc, < 3.
If Z(t) = 0 then y(t) = y(¢t) = 0. If 2(¢) Z 0 then
vo = I2l1c, 9 € My, -
Therefore (2.15) and (2.16) yield
t ¢
[ on0)(s) = pol)() ds] <31 [ Tnlan)() = plan) (s} ds| - for e € 0,1
0 0
From this, in view of (2.4), condition (2.11) follows. d

The theorem just proved implies
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Corollary 2.1. Let the system (0.1) have a unique w-periodic solution x and let
the following condition be satisfied for any absolutely continuous w-periodic vector
function y : R — R":

kEI-II—loo/O [Pk (y)(s) — p(y)(s)]ds =0  uniformly on [0,w].

Let further .

lim [9x(s) — q(s)]ds = 0 uniformly on [0,w]
k—+o00 fg

and let there be a summable function 7 : [0,w] — R4 such that
P& () O < n(@)l[ylle.

almost everywhere on [0,w] for any y € C,,(R™). Then the conclusion of Theorem

2.1 holds.

The restriction of an w-periodic solution of the systems (0.2) and (2.2) to [0, w]
is a solution of differential systems

dz(t)

(2.17) — = PWz(Ct) +a(t)
and
(2.18) PO p)alc®) + anlt)

dt
with the boundary conditions (1.6), respectively. On the other hand, w-periodic
continuations of solutions of the problems (2.17), (1.6) and (2.18), (1.6) represent
solutions of the systems (0.2) and (2.2), respectively. That is why Corollary 2.1
implies

Corollary 2.2. Let the system (0.2) have a unique w-periodic solution x,

t

lim [Pi(s) — P(s)]ds =0 uniformly on [0,w],
k—+o0 0

¢
lim [9x(s) — q(s)]ds =0  uniformly on [0, w]
k—+o00 fg
and
esssup{|Cs(t) — (@) :t €T} =0 fork = +0.

Further let there be a summable function 1 : [0,w] — Ry such that
Pl <o) (k=12 )

almost everywhere on [0, w]. Then there is a positive integer ko such that for each
k > ko, the system (2.2) has a unique w-periodic solution z;, and the equality (2.7)
is satisfied.
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