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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 301 { 308ON THE DOMAIN OF INFLUENCE IN THERMOELASTICITYOF BODIES WITH VOIDSMarin MarinAbstract. The domain of inuence, proposed by Cowin and Nunziato, isextended to cover the thermoelasticity of bodies with voids. We prove thatfor a �nite time t > 0 the displacement �eld ui, the temperature � andthe change in volume fraction � generate no disturbance outside a boundeddomain Bt. 1. IntroductionIt is remarkable to note that the theory of materials with voids or vacuous poreswas �rst proposed by Nunziato and Cowin [8]. In this theory the authors introducean additional degree of freedom in order to develop the mechanical behavior of abody in which the skeletal material is elastic and interstices are voids of material.The intended applications of the theory are to geological materials like rocks andsoil and to manufactured porous materials. The linear theory of elastic materialswith voids was developed by Cowin and Nunziato in [3]. Here the uniquenessand weak stability of solutions are also derived. Iesan in [4] has established theequations of thermoelasticity of materials with voids. An extension of these resultsto cover the theory of micropolarmaterials with voids was been made in our studies[6], [7]. In the present paper we �rst consider the basic equations and conditionsof the mixed initial-boundary value problem in the context of thermoelasticity ofbodies with voids. Next we de�ne the domain of inuence Bt of the data attime t associated with the problem. We adopt the method used in [1] and [5]to establish a domain of inuence theorem. The main results assert that in thecontext of theory considered, the solutions of the mixed initial-boundary valueproblem vanishes outside Bt, for a �nite time t > 0.1991 Mathematics Subject Classi�cation: 73C35, 73C15.Key words and phrases: thermoelasticity, domain of inuence, voids.Received February 5, 1996.



302 MARIN MARIN2. Basic equationsAn anisotropic elastic material is considered. Assume a such body that occupiesa properly regular region B of three-dimensional Euclidian space R3 bounded bya piecewise smooth surface @B and we denote the closure of B by �B. We use a�xed system of rectangular Cartesian axes Oxi; (i = 1; 2; 3) and adopt Cartesiantensor notation. A superposed dot stands for the material time derivate whilea comma followed by a subscript denotes partial derivatives with respect to thespatial coordinates.Einstein summation on repeated indices is also used. Also, the spatial argumentand the time argument of a function will be omitted when there is no likehood ofconfusion. The basic equations from thermoelasticity of bodies with voids are, [4]tij;j + %fi = %�ui;(1) hi;i + g + %l = %���;(2) %T0 _� = qi;i + %r:(3)The equation (1) is the motion equation, (2) is the balance of the equilibratedforces and (3) is the energy equations. We complete the above equations with- the constitutive equationstij = Cijmnemn + Bij� +Dijk�;k � �ij�;hi = Aij�;j +Dmniemn + di� � ai�;g = �Bijeij � �� � di�;i +m�;(4) � = �ijeij +m� + ai�;i + a�;qi = kij�;j;- the kinetic relations2eij = ui;j + uj;i ; � = T � T0 ; � = '� '0 :(5)In the above equations we have used the following notations: %-the constantmass density, �-the speci�c entropy, T0-the constant absolute temperature of thebody in its reference state, � -the equilibrated inertia, ui- the components of dis-placement vector, '-the volume distribution function which in the reference stateis '0, �-the change in volume fraction measured from the reference state, �-thetemperature variation measured from the reference temperature T0, eij-the com-ponents of the Cauchy strain tensor, tij-the components of the symmetric stresstensor, hi-the components of the equlibrated stress vector, qi-the components ofthe heat ux vector, fi-the components of the body forces, r-the heat supplyper unit time, g-the intrinsic equilibrated force, l-the extrinsic equilibrated bodyforce, Cijmn; Bij; Dijk; �ij; Aij; di; ai; �;m; a; kij-the characteristic functions of thematerial, and they obey the symmetry relationsCijmn = Cmnij = Cjimn ; Bij = Bji ; Aij = Aji ;(6) Dijk = Djik ; �ij = �ji ; kij = kji



ON THE DOMAIN OF INFLUENCE : : : 303The entropy inequality implies kij�;i�;j � 0:(7)To the system of �eld equations (1) { (5) we adjoin the following initial conditionsui(x; 0) = u0i (x) ; _ui(x; 0) = u1i (x) ; �(x; 0) = �0(x) ;(8) �(x; 0) = �0(x) ; _�(x; 0) = �1(x) ; x 2 �B ;and the following prescribed boundary conditionsui = �ui on @B1 � [0; t0) ; ti = tijnj = �ti on @Bc1 � [0; t0) ;� = �� on @B2 � [0; t0) ; h = hini = �h on @Bc2 � [0; t0) ;(9) � = �� on @B3 � [0; t0) ; q = qini = �q on @Bc3 � [0; t0) ;where @B1; @B2 and @B3 with respective complements @Bc1; @Bc2 and @Bc3, aresubsets of @B, ni are the components of the unit outward normal to @B, t0 issome instant that may be in�nite, u0i ; u1i ; �0; �0; �1; �ui; �ti; ��; ��; �q and �h areprescribed functions in their domains. Introducing (5) and (4) into equations (1),(2) and (3), we obtain the following system of equations%�ui = (Cjimnum;n + Bij� +Dijk�;k � �ij�);j + %fi ;(10) %��� = (Dmnium;n + di� +Aij�;j � ai�);i + %l ��Bijui;j � �� � di�;i +m� ;a _� = 1%T0 (kij�;j);i + 1T0 r � �ij _ui;j �m _� � ai _�;i :By a solution of the mixed initial boundary value problem of the theory of ther-moelasticity of bodies with voids in the cylinder 
0 = B � [0; t0) we mean anordered array (ui; �; �) which satis�es the system (10) for all (x; t) 2 
0, theboundary conditions (9) and the intial conditions (8).3. Main resultWe begin this section with the de�nition of the domain of inuence. Next, weestablish a domain of inuence inequality, which is a counterpart of the inequalityestablished in [5]. Finally, we shall prove a domain inuence theorem in the contextof thermoelasticity of bodies with voids. In all what follows we shall use thefollowing assumptions on the material propertiesi) % > 0 ; � > 0 ; T0 > 0 ; a > 0 ;ii) Cijmnxijxmn + 2Bijxijz + 2Dijkxijyk + 2diyiz + �z2 + Aijyiyj �� �(xijxij + yiyi + z2) ; for all xij = xji; yi; z ; � > 0 ;iii) kij�i�j � �i�i ; for all �i ,  > 0 .



304 MARIN MARINThese assumptions are in agreement with the usual restrictions imposed in themechanics of continua. The assumption iii) represent a considerable strenghteningof the consequence (7) of the entropy production inequality.For a su�ciently small " > 0, let W"(z) be a smooth nondecreasing function,vanishing in (�1; 0] and equal to one in [";1) and for 0 � s � t,G(x; s) = W"�R� rc + t� s�(11)for some �xed positive R and t, where r = jx � x0j; x0 is an arbitrary �xedpoint, c is a positive constant to be determined later.G(x; s) is a smooth function on B � [0; t]; vanishing outside � where� = [s2[0;t]S[x0; R+ c(t� s)] :The sphere S(x0;R) is de�ned asS(x0;R) = fx 2 R3 : jx� x0j < Rg :(12)Let U (x; s) be the function de�ned asU (x; s) = 12[% _ui _ui + %� _�2 + a�2 +Cijmnui;jum;n + ��2 +(13) + Aij�;i�;j + 2Bij�ui;j + 2Dijk�;kui;j + 2di��;i](x; s) :We also de�ne the function K(x; s)K(x; s) = 12[% _ui _ui + %� _�2 + a�2 + ui;jui;j + �2 + �;i�;i](x; s) :(14)Taking into account the assumptions i) and ii) from (13) and (14) we deduceK(x; s) � U (x; s) :(15)The next theorem is a necessary step to prove the main result.Theorem 1. Let (ui; �; �) be a solution to the system of equations (10)with the initial conditions (8) and the boundary conditions (9). Then for anyR > 0; t > 0 and x0 2 B, we have that(16) ZD[x0;R] U (x; t)dV + 1%T0 Z t0 ds ZD[x0;R+c(t�s)] kij�;i�;jdV �� ZD[x0;R+ct] U (x; 0)dV + Z t0 ds ZD[x0;R+c(t�s)] %[fi _ui + l _� + 1%2T0 r�]dV ++ Z t0 ds Z@D[x0;R+c(t�s)][�ti _ui + �h _� + 1%T0 �q�]dS ;where D(x0;R) = fx 2 B : jx�x0j < Rg; @D(x0;R) = fx 2 @B : jx�x0j < Rg .



ON THE DOMAIN OF INFLUENCE : : : 305Proof. Multiplying the equation (10)1 by G _ui, it results(17) 12G ddt(% _ui _ui) = %Gfi _ui + (Gtij _ui);j � G;jtij _ui �� G(Cijmnum;n _ui;j + Bij� _ui;j +Dijk�;k _ui;j � �ij� _ui;j) :Multiplying the equation (10)2 by G _�, we get(18) 12G ddt(%� _�2) = %Gl _� + (Ghi _�);i �G;ihi _� ��G(Aij�;j _�;i +Dmnium;n _�;i + di� _�;i � ai� _�;i) ��G(Bijui;j _� + �� _� + di�;i _� �m� _�) :At last, multiplying the equation (10)3 by G� , we are led to(19) 12G ddt(a�2) = 1T0Gr� + 1%T0 [(G�qi);i � G;i�qi]�� 1%T0Gkij�;i�;j � G(�ij� _ui;j +m� _� + ai� _�;i) :Additing equations (17), (18) and (19) together, it results(20) 12G ddt(% _ui _ui + %� _�2 + a�2) = %Gfi _ui + %Gl _� + 1T0Gr� ++ G(tij _ui + hj _� + 1%T0 �qj);j � G[Cijmnum;n _ui;j + �� _� +Aij�;i _�;j ++Bij( _ui;j� + ui;j _�) +Dijk(ui;j _�;k + _ui;j�;k) + di(� _�;i + _��;i)]�� G;jtij _ui �G;ihi _� � 1%T0G;iqi� � 1%T0Gkij�;i�;j :The relation (20) may be restated as follows(21) 12G ddt(% _ui _ui + %� _�2 + a�2 +Cijmnum;nui;j + ��2 +Aij�;i�;j ++ 2Bijui;j� + 2Dijkui;j�;k + 2di��;i) == %Gfi _ui + %Gl _� + 1T0Gr� + G(tij _ui + hj _� + 1%T0 �qj);j ��G;jtij _ui � G;ihi _� � G;i 1%T0 �qi � 1%T0 kij�;i�;j ;that is(22) 12G _U + 1%T0 kij�;i�;j = %Gfi _ui + %Gl _� + 1T0Gr� ++G(tij _ui + hj _� + 1%T0 �qj);j �G;jtij _ui � G;ihi _� � G;i 1%T0 �qi :



306 MARIN MARINIntegrating both sides of equations (22) over B�[0; t] and by using the divergencetheorem and the boundary conditions (9), we deduce12 ZB GU (x; t)dV + 1%T0 Z t0 ZB Gkij�;i�;jdV ds =(23) = 12 ZB GU (x; 0)dV + Z t0 Z@B G(�ti _ui + �h _� + 1%T0 �q�)dV ds++ Z t0 ZB %G(fi _ui + l _� + 1%2T0 r�)dV ds+ 12 Z t0 ZB _GU (x; s)dV ds �� Z t0 ZB(G;jtij _ui +G;ihi _� + 1%T0G;iqi�)dV ds :Taking into account the de�nition (11) of the function G, we �nd that(24) j �G;jtij _ui � G;ihi _� � 1%T0G;iqi�j == j1cW 0" xjr tij _ui + 1cW 0" xir hi _� + 1c%T0W 0" xir qi�j == j1cW 0" 1r [(Cijmnum;nxj + Bij�xj +Dijk�;kxj � �ij�xj) _ui ++ (Aij�;jxi +Dmnium;nxi + di�xi � ai�xi) _� + 1%T0 kij�;j�xi]jwhere W 0" = dW"dr :We now make use of arithmetic-geometric mean inequalityab � 12(a2p2 + b2p2)(25)to the last terms of relation (24) and by choosing suitable parameters p we can�nd c such thatj � G;jtij _ui �G;ihi _� � 1%T0G;iqi�j � W 0"K(x; s) ;(26)and that(27) Z t0 ZB _GU (x; s)dV ds� Z t0 ZB(G;jtij _ui +G;ihi _� + 1%T0G;iqi�)dV ds �� Z t0 ZBW 0"(x; s)[K(x; s)� U (x; s)]dV ds � 0 :



ON THE DOMAIN OF INFLUENCE : : : 307By using the inequality (27) in equation (23), it resultsZB GU (x; t)dV + 1%T0 Z t0 ZB Gkij�;i�;jdV ds �(28) � ZB GU (x; 0)dV + + Z t0 ZB %G(fi _ui + l _� + 1%2T0 r�)dV ds++ Z t0 Z@B G(�ti _ui + �h _� + 1%T0 �q�)dV ds :Letting "! 0 into relation (28), G tends boundedly to the characteristic functionof � and we get the inequality (16).Based on the above estimations, we can now prove the main result of our study :the domain of inuence theorem.Let B(t) be the set of points x 2 �B such that:(1) x 2 B ) u0i 6= 0 or u1i 6= 0 or �0 6= 0 or �1 6= 0 or �0 6= 0 or 9� 2 [0; t]such that fi(x; � ) 6= 0 or l(x; � ) 6= 0 or r(x; � ) 6= 0 ;(2) x 2 @B1 ) 9� 2 [0; t] such that �ui(x; � ) 6= 0 ;(3) x 2 @Bc1 ) 9� 2 [0; t] such that �ti(x; � ) 6= 0 ;(4) x 2 @B2 ) 9� 2 [0; t] such that ��(x; � ) 6= 0 ;(5) x 2 @Bc2 ) 9� 2 [0; t] such that �h(x; � ) 6= 0 ;(6) x 2 @B3 ) 9� 2 [0; t] such that ��(x; � ) 6= 0 ;(7) x 2 @Bc3 ) 9� 2 [0; t] such that �q(x; � ) 6= 0 :The domain of inuence of the data at instant t is de�ned asBt = fx0 2 �B : B(t) \ �S(x0; ct) 6= �g;(29)where � is the empty set.Theorem 2. Let (ui; �; �) be a solution to the system of equations (10) withthe initial conditions (8) and the boundary conditions (9). Then we haveui = 0; � = 0; � = 0; on f �B nBtg � [0; t] :Proof. For any x0 2 �B n Bt and � 2 [0; t]; by using the inequality (16) witht = � and R = c(t� � ); we obtainZD[x0;c(t��)] U (x; � )dV + 1%T0 Z �0 ZD[x0;c(t�s)] kij�;i�;jdV ds �(30) � ZD[x0 ;ct)]U (x; 0)dV + Z �0 ZD[x0 ;c(t�s)] %(fi _ui + l _� + 1%2T0 r�)dV ds++ Z �0 Z@D[x0;c(t�s)] %(�ti _ui + �h _� + 1%2T0 �q�)dSds :



308 MARIN MARINSince x0 2 �B nBt; we have x 2 D(x0; ct) ) x 62 B(t) and henceZD[x0;ct] U (x; 0)dV = 0 :(31)Moreover, since D[x0; c(t� s)] � D(x0; ct) ; we haveZ �0 ZD[x0;c(t�s)] %(fi _ui + l _� + 1%2T0 r�)dV ds = 0 ;(32) Z �0 Z@D[x0;c(t�s)](�ti _ui + �h _� + 1%T0 �q�)dS ds = 0 :(33)Taking into account the assumption iii) and the relations (31), (32) and (33) weobtain ZD[x0;c(t��)] U (x; � )dV � 0 ;(34)and with aid of inequality (15), we getZD[x0;c(t��)]K(x; � )dV � 0 ;(35)From the de�nition of K; it results_ui(x0; � ) = 0 ; �(x0; � ) = 0 ; �(x0; � ) = 0 ;for any (x0; � ) 2 f �B nBtg � [0; t].Finally, since ui(x0; 0) = 0 for any x0 2 �B nBt, we deduceui(x0; � ) = 0; �(x0; � ) = 0; �(x0; � ) = 0 ;for any (x0; � ) 2 f �B nBtg � [0; t] and the proof of Theorem 2 is complete.References[1] Carbonaro, B., Russo, R., J. Elasticity, 14, 163-174 (1984).[2] Chandrasekharaiah, D. S., J. Elasticity, 18, 173-179 (1987).[3] Cowin, S. C., Nunziato, J. W., J. Elasticity, 13, 125-147 (1983).[4] Iesan, D., J. Elasticity, 15, 215-224 (1985).[5] Ignaczak, J., Carbonaro, B., J. Thermal Stresses, 9, 79-91 (1986).[6] Marin, M., C. R. Acad. Sci. Paris, t. 231, Serie II b, 475-480(1995).[7] Marin, M., J. Comp. Appl. Math., 70, 115-126(1996).[8] Nunziato, J. W., Cowin, S. C., Arch. Rat. Mech. Anal., 72, 175- 201 (1979).Faculty of MathematicsUniversity of BrasovStr. Iuliu Maniu, 502200 Brasov, ROMANIA
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