
Archivum Mathematicum

Michal Fečkan
Bifurcation of periodic and chaotic solutions in discontinuous systems

Archivum Mathematicum, Vol. 34 (1998), No. 1, 73--82

Persistent URL: http://dml.cz/dmlcz/107634

Terms of use:
© Masaryk University, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107634
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 34 (1998), 73–82

Bifurcation of Periodic and Chaotic Solutions in

Discontinuous Systems

Michal Fečkan
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Abstract. Chaos generated by the existence of Smale horseshoe is the
well-known phenomenon in the theory of dynamical systems. The Poin-
caré-Andronov-Melnikov periodic and subharmonic bifurcations are also
classical results in this theory. The purpose of this note is to extend those
results to ordinary differential equations with multivalued perturbations.
We present several examples based on our recent achievements in this direc-
tion. Singularly perturbed problems are studied as well. Applications are
given to ordinary differential equations with both dry friction and relay
hysteresis terms.
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1 Introduction

There are many concrete problems in mechanics with non-smooth nonlinearities.
Such discontinuities arise in the context of modelling Coulomb friction [1,3,9,19].
One of the simplest examples for such problems is provided by the pendulum with
dry friction given by

ẍ+ x+ µ sgn ẋ = ψ(t) . (1)

Here sgn r = r/|r| for r ∈ R \ {0}. Equation (1) is studied for the periodic case
in [7] and for the almost periodic case in [8]. Also a rather complete picture of
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the asymptotic behaviour of (1) is derived. The range of µ is found such that
nontrivial almost periodic and periodic motions exist. The question of uniqueness
of such motions is studied as well.

The numerical analysis is presented in the papers [26,27,28] for a mechanical
model of a friction-oscillator with simultaneous self- and external excitation given
by the equation of motion

ẍ+ x = FR(vr) + u0 cosΩt , (2)

where u0, Ω are positive constants, vr = v0 − ẋ is a relative velocity and FR is the
friction force defined by

FR(vr) = µ(vr)FN sgn (vr) for the slip mode vr 6= 0

FR(vr) = x(t) − u0 cosΩt for the stick mode vr = 0 .

Here µ(vr) is a friction coefficient and FN is the normal force. Three different
types of friction coefficients µ(vr) are studied in [26,27,28] including the Coulomb
one µ(vr) = 1, vr 6= 0. The bifurcation behaviour and the routes to chaos of (2)
are investigated for a wide range of parameters. The influence of these three types
of friction coefficients is described and the admissibility of smoothing procedures
is examined by comparing results gained for non-smooth and smoothed friction
coefficients. These papers [26,27,28] present a nice introduction to the phenomenon
of dry friction problem as well.

The boundedness of solutions of the equation

ẍ+ x+ µ sgnx = ψ(t) (3)

is studied in [23] as well as the existence of infinitely many periodic and quasiperi-
odic solutions of (3) is established for all µ > 0 sufficiently large.

By using Lyapunov exponents, the qualitative analysis for (1) and for a similar
friction-oscillator is given in [20] and [21], respectively. A numerical analysis of the
same friction-oscillator is presented in [22].

Finally, let us note that equations of the type (1) also appear in electrical
engineering (see [1, Chap. III]), related problems are studied in control systems
(see [31]) as well, and dry friction problems were investigated already in [29], [30].

This note is based on recent results derived in the papers [10,11,12,13,14,15]. We
focus on concrete examples rather than presenting theoretical results. In Section 2,
we give examples with chaotic solutions. Section 3 deals with bifurcation of periodic
solutions for a friction-oscillator. A problem with small relay hysteresis is studied
in Section 4.

In this paper, the dry friction is modelled by the Coulomb law [9], [19] which
includes a static coefficient of friction µs and a dynamic coefficient of friction µd.
If µs = µd = µ, then the friction law may be written as ẋ → µ sgn ẋ. On the
other hand, since usually µs > µd, the smooth approximation of sgn r given, for
instance, by

Φ(r) =
1

π

(

7 arctan8sr − 5 arctan4sr
)

, s≫ 1
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seems to be physically more relevant than the mathematically convenient approx-
imation of the form

r → 2

π
arctan sr, s≫ 1 .

The function Φ has two symmetric spikes at r = ±
√

6
8s of the values

± 1

π

(

7 arctan
√

6 − 5 arctan

√
6

2

)

.
= ±1, 2261344 .

Moreover, Φ(r) is close to 1 or −1 when r > 0 or r < 0, respectively, tends off
0. Summarizing, we can take for any η ≥ 0, ζ ≥ 1, 0 < κ ≤ 1 the multivalued
function Sgnη,ζ,κ r defined by

Sgnη,ζ,κ r =































−1 for r < −η ,
[−ζ,−κ] for − η ≤ r < 0 ,

[−ζ, ζ] for r = 0 ,

[κ, ζ] for 0 < r ≤ η ,

1 for r > η .

The term Sgnη,ζ,κ ẋ can be viewed as an extension for modelling dry friction in-
cluding static and dynamic frictions as well.

2 Chaos in Dry Friction Problems

Dry friction forces acting on a moving particle due to its contact to walls have
in certain situations the form µ(x)(g0(ẋ) + sgn ẋ), where x is displacement from
the rest state, ẋ is velocity, µ and g0 are non-negative bounded continuous, and
sgn r = r/|r| for r ∈ R \ {0}, see [1,5,19]. If there is also damping , restoring and
external forces, the following equation is studied

ẍ+ g(x) + µ1 sgn ẋ+ µ2ẋ = µ3ψ(t) , (4)

where µ1, µ2, µ3 ∈ R are small parameters, g ∈ C2(R,R), g(0) = 0, g′(0) < 0, ψ ∈
C1(R,R) and ψ is periodic.

If a smooth small perturbation is included in (4), then by using a method de-
veloped in dynamical systems (see [18]), it would be possible to show the existence
of chaos for such ordinary differential equations.

By introducing the multivalued mapping

Sgn r =

{

sgn r for r 6= 0 ,

[−1, 1] for r = 0 ,

(4) is rewritten as follows

ẍ+ g(x) + µ2ẋ− µ3ψ(t) ∈ −µ1 Sgn ẋ . (5)
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By a solution of any first order differential inclusion we mean a function which is
absolute continuous and satisfying differential inclusion almost everywhere.

We assume the existence of a homoclinic solution ω of ẍ + g(x) = 0 such that
lim

t→±∞
ω(t) = 0 and ω(0) > 0.

Lemma 1. ([14]) There is a unique t0 ∈ R satisfying ω̇(t0) = 0. Consequently,
ω̇(t) > 0, ∀ t < t0 and ω̇(t) < 0, ∀ t > t0.

We consider a mapping Mµ, µ = (µ1, µ2, µ3), of the form

Mµ(α) = −2ω(t0)µ1 − µ2

∞
∫

−∞

ω̇2(s) ds+ µ3

∫ ∞

−∞
ω̇(s)ψ(s+ α) ds .

Since ω(0) > 0, Lemma 1 implies ω(t0) > 0. By putting

A(α) =

∫ ∞

−∞
ω̇(s)ψ(s+ α) ds ,

we arrive at

Mµ(α) = A(α)µ3 − 2ω(t0)µ1 − µ2

∞
∫

−∞

ω̇2(s) ds .

We note that A is periodic and C1-smooth. We put m̄ = minA, M̄ = maxA. By
applying results of [12], we obtain the following theorem.

Theorem 2. Assume that A has critical points only at maximums and minimums.
Then there is an open subset R of R

3 of all sufficiently small (µ1, µ2, µ3) satisfying
µ3 6= 0 together with

m̄ <

2ω(t0)µ1 + µ2

∞
∫

−∞
ω̇2(s) ds

µ3
< M̄ ,

on which equation (4) has chaotic solutions in the following sense:
If J : E =

{

E : E ∈ {0, 1}Z
}

→ E is the Bernoulli shift defined by J
(

{ej}j∈Z

)

= {ẽj}j∈Z, ẽj = ej+1, then for any µ ∈ R and m ∈ N sufficiently large, (4)
possesses a family of solutions

{

xm,E

}

E∈E such that

(i) E → xm,E is injective;

(ii) xm,J(E)(t) is orbitally close to xm,E(t + Ωm), where Ω > 0 is the period
of ψ.

To be more precise, we consider Duffing-type equation (4) with g(x) = −x +
2x3, ψ(t) = cos t. Hence (4) has the form

ẍ− x+ 2x3 + µ1 sgn ẋ+ µ2ẋ = µ3 cos t . (6)
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Then (see [18]), ω(t) = sech t. So we have

A(α) =

∫ ∞

−∞
˙sech s cos (s+ α) ds = π sech

π

2
sin α ,

and M̄ = −m̄ = π sech π
2 , t0 = 0, ω(t0) = 1,

∞
∫

−∞
ω̇2(s) ds = 2/3.

Corollary 3. Equation (6) has chaotic solutions in the sense of Theorem 2 pro-
vided that the parameters µ1, µ2, µ3 are sufficiently small satisfying

0 < 3π|µ3| sech
π

2
< |6µ1 + 2µ2| .

The next example is a modification of (4)

ẍ+ δg(x) +
η√
δ
ẋ+ ψ(t) sgn ẋ = 0 , (7)

where g ∈ C2(R,R), g(0) = 0, g′(0) < 0, δ > 0 is a large parameter, ψ ∈
C1(R, (0,∞)) is periodic and η is a constant. We assume the existence of a ho-
moclinic solution ω of ẍ+ g(x) = 0 such that lim

t→±∞
ω(t) = 0 and ω(0) < 0. Then

again there is a unique t0 ∈ R satisfying ω̇(t0) = 0. Consequently, ω̇(t) < 0, ∀ t <
t0, ω̇(t) > 0, ∀ t > t0 and ω(t0) < 0.

The equation (7) is rewritten in the form

εẋ = y, ε =
√

1/δ

εẏ = −g(x) − ε2
(

ηy + ψ(t) sgn y
)

. (8)

Hence (8) is a singularly perturbed discontinuous problem. Results of [12] imply
the next theorem.

Theorem 4. If the function

M(α) = 2ψ(α)ω(t0) − η

∫ ∞

−∞
ω̇2(s) ds

has a simple root, then for any δ > 0 sufficiently large, equation (7) has chaotic
solutions in the sense of Theorem 2.

We consider again the Duffing-type equation (7) of the form

ẍ+ δ(−x+ 2x3) +
η√
δ
ẋ+ (2 + cos t) sgn ẋ = 0 . (9)

Hence g(x) = −x + 2x3, ψ(t) = 2 + cos t, ω(t) = −sech t, t0 = 0, ω(t0) = −1.
Consequently, Theorem 4 gives the next corollary.

Corollary 5. Equation (9) has chaotic solutions in the sense of Theorem 2 pro-
vided that δ > 0 is sufficiently large and η ∈ (−9,−3).
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3 Bifurcation of Periodic Solutions

Consider a mass attached to a mechanical device on a moving ribbon with a speed
v0 > 0. If there is also an external force and damping then the resulting differential
equation [1,3,9] has the form

ẍ+ q(x) + µ1 sgn (ẋ− v0) + µ2ẋ = µ3 sinωt , (10)

where sgn r corresponds to the dry friction between the mass and ribbon, q ∈
C2(R,R) represents the force of the mechanical device and µ1, µ2, µ3, ω > 0 are
constants. Since sgn r is discontinuous in r = 0, (10) is considered as a perturbed
differential inclusion of the form

ẋ = y, ẏ ∈ −q(x) − µ1 Sgn (y − v0) − µ2y + µ3 sinωt . (11)

Moreover, we assume

(i) There are numbers 0 < c < e and a C2-mapping γ : (c, e)×R → R such that
γ(θ, t) has the minimum period θ in t, γ̇(θ, 0) = 0 and γ(θ, ·) is a solution
of ẍ+ q(x) = 0.

If c < 2π/ω < e then we take

B(α) =

2π/ω
∫

0

sinω(t+ α)γ̇(2π/ω, t) dt .

Since B is periodic, we put m̃ = minB, M̃ = maxB.

Theorem 6. Let v0 > 0 be sufficiently small and let B have only critical points at
minimums and maximums. If (i) holds and c < 2π/ω < e, then for any sufficiently
small µ = (µ1, µ2, µ3), µ3 6= 0 satisfying

m̃ <
1

µ3

(

µ2

2π/ω
∫

0

γ̇2(2π/ω, t) dt+ 2µ1

∣

∣γ(2π/ω, π/ω)− γ(2π/ω, 0)
∣

∣

)

< M̃ ,

equation (10) has a 2π/ω-periodic solution in a neighbourhood of the family γ(θ, t),
θ ∈ (c, e) from (i).

Proof. We apply Corollary 3.2 of [10]. The formula (3.6) of [10] has the form

Mµ,v0
(α) =

{

2π/ω
∫

0

h(s)γ̇(2π/ω, s) ds | h ∈ L2(0, 2π/ω) ,

h(t) ∈ µ1 Sgn (γ̇(2π/ω, t)− v0) + µ2γ̇(2π/ω, t)− µ3 sinω(t+ α)

a.e. on [0, 2π/ω]
}

.
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Lemma 5.5. of [10] gives that γ̇(2π/ω, 0) = 0, γ̇(2π/ω, π/ω) = 0 and γ̇(2π/ω, t) 6=
0 ∀ t ∈ (0, 2π/ω) \ {π/ω}. Since γ̈ + g(γ) = 0, we see that γ̈(2π/ω, 0) 6= 0,
γ̈(2π/ω, π/ω) 6= 0. Consequently for v0 > 0 sufficiently small, γ̇(2π/ω, t) = v0
has the only solutions t1(v0) + k2π/ω, t2(v0) + k2π/ω, t1(v0) < t2(v0), where
k ∈ Z. Moreover, either t1(0) = 0, t2(0) = π/ω or t1(0) = π/ω, t2(0) = 2π/ω,
and t1,2 are smooth and γ̇(2π/ω, t) > v0 on (t1(v0), t2(v0)); γ̇(2π/ω, t) < v0 on
(t2(v0), t1(v0) + 2π/ω). Hence we obtain

Mµ,v0
(α) =µ2

2π/ω
∫

0

γ̇2(2π/ω, t) dt+ 2µ1(γ(2π/ω, t2(v0)) − γ(2π/ω, t1(v0))

− µ3

2π/ω
∫

0

sinω(t+ α)γ̇(2π/ω, t) dt .

We note

Mµ,0(α) = µ2

2π/ω
∫

0

γ̇2(2π/ω, t) dt+ 2µ1

∣

∣γ(2π/ω, π/ω)− γ(2π/ω, 0)
∣

∣ − µ3B(α) .

The assumptions of our theorem imply that Mµ,v0
changes the sign on R for v0

sufficiently small and for µ given in the theorem. Consequently, Corollary 3.2 of
[10] can be applied to (10). The proof is finished. ⊓⊔

We refer the reader for more examples to [10].

4 Systems with Small Relay Hysteresis

In this section, we deal with relay hysteresis [2,24,25]. So there is given a pair of real
numbers α < β (thresholds) and a pair of real-valued continuous functions ho ∈
C([α,∞),R), hc ∈ C((−∞, β],R) such that ho(u) ≥ hc(u)∀u ∈ [α, β]. Moreover,
we suppose that ho, hc are bounded on [α,∞), (−∞, β], respectively.

For a given continuous input u(t), t ≥ t0, one defines the output v(t) = f(u)(t)
of the relay hysteresis operator as follows

f(u)(t) =



















ho(u(t)) if u(t) ≥ β ,

hc(u(t)) if u(t) ≤ α ,

ho(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = β ,

hc(u(t)) if u(t) ∈ (α, β) and u(τ(t)) = α ,

where τ(t) = sup {s : s ∈ [t0, t], u(s) = α or u(s) = β}. If τ(t) does not exist (i.e.
u(σ) ∈ (α, β) for σ ∈ [t0, t]), then f(u)(σ) is undefined and we have to initially set
the relay open or closed when u(t0) ∈ (α, β). Of course, when either ho(β) > hc(β)
or ho(α) > hc(α) then f(u) is generally discontinuous.
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Let us consider the problem
...
y − ÿ + ẏ − y = µf(y) , (12)

where µ ∈ R and f is of the form

α = −δ, β = δ, δ > 0, ho = g + p, hc = g − p

with p > 0 constant and g ∈ C1(R,R).

Theorem 7. If θ0 > δ is a simple root of the function

4p
(

√

1 − δ2

θ2
− δ

θ

)

+

2π
∫

0

g(θ sin t) sin t dt ,

then there is a constant K > 0 such that for any µ sufficiently small there are θµ,

ωµ, |θ0 − θµ| ≤ K|µ|, |ω0 − ωµ| ≤ K|µ|, ω0 = − 2δp
πθ2

0

and a 2π(1 + µωµ)-periodic

solution yµ of (12) satisfying

sup
t∈R

∣

∣

∣
yµ(t) − θµ sin

t

1 + µωµ

∣

∣

∣
≤ K|µ| .

Proof. We apply Theorem 2.2 of [15], by taking

O = (δ,∞), φ1(t) = ψ1(t) = sin t, θ > δ ,

φ2(t) = ψ2(t) = cos t, η(θ, t) = θ sin t, t0 = arcsin
δ

θ
.

The formula (2.8) of [15] has the form

M(ω, θ) =
(

M1(ω, θ),M2(ω, θ)
)

,

where

M1(ω, θ) =

2π
∫

0

ω(θ cos t+ 2θ sin t− 3θ cos t) sin t dt+

t0+π
∫

t0

(g(θ sin t) + p) sin t dt

+

t0+2π
∫

t0+π

(g(θ sin t) − p) sin t dt = 2πθω + 4p

√

1 − δ2

θ2
+

2π
∫

0

g(θ sin t) sin t dt ,

M2(ω, θ) =

2π
∫

0

ω(θ cos t+ 2θ sin t− 3θ cos t) cos t dt+

t0+π
∫

t0

(g(θ sin t) + p) cos t dt

+

t0+2π
∫

t0+π

(g(θ sin t) − p) cos t dt = −2πθω − 4
δp

θ
.

Clearly (ω0, θ0) is a simple zero of M . Consequently, [15, Theorem 2.2] implies the
result. The proof is finished. ⊓⊔

More examples are given in [15].
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28. Popp, K. and Stelter, P., Stick-slip vibrations and chaos, Philos. Trans. R. Soc.
London A 332 (1990), 89–105

29. Reissig, R., Erzwungene Schwingungen mit zäher Dämpfung und starker Gleitrei-
bung. II., Math. Nachr. 12 (1954), 119–128
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