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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 285 { 293ON SKEW 2-PROJECTABLE ALMOSTCOMPLEX STRUCTURES ON TMAnton Dekr�etAbstract. We deal with a (1;1)-tensor �eld � on the tangent bundle TM pre-serving vertical vectors and such that J� = ��J is a (1;1)-tensor �eld on M ,where J is the canonical almost tangent structure on TM . A connection �� onTM is constructed by �. It is shown that if � is a V B-almost complex structureon TM without torsion then �� is a unique linear symmetric connection such that�(��) = �� and r�� (J�) = 0.INTRODUCTIONIn this paper we assume that all manifolds and maps are in�nitely di�erentiable.Let F be an almost complex structure on 2m dimensional manifoldM . Recallthat F is a (1,1)-tensor �eld onM such that F 2 = �Id, see [9]. It is known [5], [9],that there is not any connection on M , (a linear connection on TM ), which canbe constructed by a natural operators from F only (without auxiliary geometricalobjects).Let (xi) be a chart on M and (xi; xi1) be the induced chart on TM . Let � == (aijdxj + bijdxj1) 
 @=@xi + (cijdxj + hijdxj1) 
 @=@xi1 be a (1,1)-tensor �eld onTM . If � preserves the vertical bundle V TM of vertical vectors on TM , i.e. ifbij = 0, then J� = aijdxj 
 @=@xi1; �J = hijdxi 
 @=@xi1 (here J = dxi 
 @=@xi1is the canonical morphism on TM ), are semibasic vertical valued forms on TM .We have shown in [2] that if � is an almost complex structure on TM preservingV TM then there is not a connection on TM which can by constructed by a naturaloperator of zero order from � only.The complete lift of an almost complex structure F onM is the almost complexstructure F c on TM , which preserves V TM and JF c = F cJ , see [7]. All naturallifts of F on TM , see [3], have these properties.1991 Mathematics Subject Classi�cation : 53C05, 58A20.Key words and phrases: tangent bundle, skew 2-projectable, (1;1)-vector �elds, almost com-plex structure, connection.Supported by the VEGA SR No. 1/1466/94.Received February 24, 1997.



286 A.DEKR�ETWhen we have studied, [2], some natural operators of �rst order from the (1,1)-tensor �elds � on TM preserving V TM into connections on TM we met with aninteresting class of (1,1)-tensor �elds � on TM which is very close to the completelift F c of a (1,1)-tensor �eld F on M and for which there are connections on TMconstructed by � only. In this paper we study this class.SKEW 2-PROJECTABLE (1,1)-TENSOR FIELDS ON TMA (1,1)-tensor �eld � on TM preserving V TM will be briey called vertical.Let us recall that every (1,1)-tensor �eld A = aij(x)dxj
@=@xi onM determinesa semibasic (1,1)-form A = aij(x)dxj 
 @=@xi1 on TM with values in V TM (v-liftof A) and a morphism A : V TM ! V TM; xi = xi; xi1 = aijxj1.De�nition 1. Let A be a regular (1,1)-tensor �eld on M . A vertical (1,1)-tensor�eld � on TM is called skew 2-projectable over A if J� = A; �J = �A.In coordinates, if A = aij(x)dxj 
 @=@xi then a skew 2-projectable (1,1)-tensorover A is of the form� = aij(x)dxj 
 @=@xi + [cij(x; x1)dxj � aij(x)dxj1]
 @=@xi1; det aij 6= 0 :Then � is a V B-(1,1)-tensor �eld on TM , i.e. �(X) is a linear and projectablevector �eld on TM for any projectable and linear vector �eld X on TM , (see [1]),i� cij(x; x1) = cijk(x)xk1.Now the equalities(1) aikakj = ��ij ; cikakj � aikckj = 0are the coordinate conditions for a skew 2-projectable (1,1)-tensor �eld � over Ato be an almost complex structure (ACS) on TM . If � is overmore V B-tensor�eld then the second condition of (1) is(2) ciksakj � aikckjs = 0 :We want to constructe connections from a skew 2-projectable (1,1)-tensor �elds.A connection � on pM : TM ! M can be consider as a (1,1)-tensor �eld h� onTM (horizontal form of �) such that TpM �h� = TpM ; h�(v) = 0 for any verticalvector v 2 V TM , where Tf denotes the tangent prolongation of a map f . Thenh�(T (TM )) = H� is the so-called horizontal subbundle of �. In coordinates h� == dxi 
 @=@xi + �ijdxj 
 @=@xi1 and (xi; xi1; dxi; dxi1) 2 H� if and only if dxi1 =�ijdxj, where �ij(x; x1) are the local functions of �. A connection � is linear if h�is V B-(1,1)-tensor �eld on TM , i.e. if �ij = �ijk(x)xk1. Reader is refered to [6] inthe case of general connections on �bre bundles.



ON SKEW 2{PROJECTABLE ALMOST COMPLEX STRUCTURES ON TM 287Remember that a semispray S is a vector �eld on TM such that J(S) = V ,where V = xi1@=@xi1 is the Liouville �eld the ows of which are the homothetieson individual �bres of TM .Let � be a general skew 2-projectable (1,1)-tensor �elds on TM over a (1,1)-tensor �eld A on M and S = xi1@=@xi + �i(x; x1)@=@xi1 be a semispray on TM .Calculating the Lie derivative LS� and using the denotations @f@xj := fj ; @f@xj1 = fj1we getLS� = [(aijkxk1 � cij)dxj + 2aijdxj1]
 @=@xi + [(Eijdxj + F ijdxj1) 
 @=@xi1] :Let Y = �i@=@xi+ i@=@xi1; �i 6= 0, be an arbitrary not vertical vector �eld onTM . Then the vector �eldLS�(Y ) = [(aijkxk1 � cij)�j + 2aijj ]@=@xi +Ki@=@xi1is a vertical �eld on TM if and only if2aijj = (cij � aijkxk1)�j ; i.e. i�i = 12~ais(csj � asjkxk1)�j; ~aikakj = �ij :(3)We have provedProposition 1. If � is a skew 2-projectable (1,1)-tensor �elds on TM over a(1,1)-tensor �eld A then there is a unique connection �� on TM the horizontalsubbundle H�� of which is spanned on the vectors Y for which LS�(Y ) 2 V TM ,where S is an arbitrary semispray S on TM .Remark 1. Let us emphesize that the connection �� is independent of the choiceof the semispray S.According to the formula (3) the functions(3') �ij = 12~ais(csj � asjkxk1)are the local functions of ��. If � is a V B-(1,1)-tensor �eld then�ij = 12~ais(csjk � asjk)xk1 ;i.e. the connection �� is linear.Recall that every connection � determines a unique semispray S� = xi1@=@xi++�ijxj1@=@xi1 which is �-horizontal. It will be called the semispray of �.



288 A.DEKR�ETProposition 2. Let � be a skew 2-projectable (1,1)-tensor �eld over A. Thenthe semispray S�� of the connection �� is just the semispray S on TM for whichthe Lie derivative [�(S); S] is vertical.Proof. Let S = xi1@=@xi + bi@=@xi1 be an arbitrary semispray. Then[�(S); S] = [(cij � aijkxk1)xj1 � 2aijbj]@=@xi +Bi@=@xi1is vertical if and only if bi = 12~ais(csj � asjkxk1)xj1i.e. i� S = S�� .The Fr�olicher-Nijenhuis bracket [�; J ] will be called the torsion of �. We saythat � is symmetric if is without torsion, i.e. if [�; J ] = 0.In the case of a connection �; �� = [h�; J ] = �ijk1dxj ^ dxk 
 @=@xi1 is thetorsion of the connection �.Lemma 1. Let �� be the connection determined by a skew 2-projectable (1,1)-tensor �eld � on TM over A. Then��� = �12A�1[�; J ] :Proof. By direct calculation:[h��; J ] = 12~ais(csjk1 � asjk)dxj ^ dxk 
 @=@xi1 ;[�; J ] = (cikj1 + aijk)dxj ^ dxk 
 @=@xi1 :(4)It completes our proof.Corollary. The connection �� is without torsion if and only if � is withouttorsion.Let � be an arbitrary connection ont TM with the local functions �ij. Let H�be the horizontal subbundle of �. Let � be a skew 2-projectable (1,1)-tensor �eldover A. Then �(H�) is the horizontal subbundle of the other connection �(�).We deduce its local equations.Let h� = dxi
@=@xi+�ijdxj
@=@xi1 be the horizontal form of �. Then �h� == aijdxj 
 @=@xi + (cij � aik�kj )dxj 
 @=@xi1 and soh�(�) = dxi 
 @=@xi + (cis � ais�ks)~asjdxj 
 @=@xi1is the horizontal form of the connection �(�), i.e. its local functions are �ij == (cis � aik�ks )~asj . Then a connection � is invariant under �, i.e. �(H�) = H� ifand only if(5) cij = �isasj + ais�sj :Remember that if a skew 2-projectable (1,1)-tensor �eld � over A is an almostcomplex structure on TM then A is an ACS on M .



ON SKEW 2{PROJECTABLE ALMOST COMPLEX STRUCTURES ON TM 289Proposition 3. If a skew 2-projectable (1,1)-tensor �eld over A is an almostcomplex structure on TM then �(H��) = H��.Proof. The relation (1) imply(6) ~auj = �auj ; ciu~auj = ~aiucuj ; ciuk1~auj = ~aiucujk1; aiuk~auj = �~aiuaujk :Then using (3) and (6) for the local functions of the connection � = �(��) weget �ij = [ciu � ait12~ats(csu � asukxk1)]~auj = 12(ciu + aiukxk1)~auj = 12~ais(csj � asjkxk1) ;i.e. �(��) = ��.In [2], Prop. 9, we have proved the following assertion. If F is a connection onTM and A;H are semibasic (1,1)-forms on TM with values in V TM then thereexists a unique vertical (1,1)-tensor �eld �(�; A;H) such that �(H�) � H� andJ� = A; �J = H. In coordinates�(�; A;H) = aijdxj 
 @=@xi + [(�ikakj � hik�kj )dxj + hijdxj1]
 @=@xi1 :Moreover if a; h are almost complex structures on V TM then �(�; A;H) is alsoan ACS on TM . This assertion can be reread in the skew 2-projectable case asfollows.Proposition 4. Let A be a regular (1,1)-tensor �eld on M and � be a connectionon TM . Then there is a unique skew 2-projectable (1,1)-tensor �eld �(�; A;�A)over A such that �(H�) = H�. Moreover, if A is an ACS on M then �(�; A;�A)is also an ACS on TM . If � is linear then �(�; A;�A) is a V B-�eld. If � iswithout torsion then �(�; A;�A) is also without torsion.As a consequence of Proposition 3 and 4 we can writeProposition 5. Let � be an ACS on TM skew 2-projectable over an ACS A onM . Then �(��; A;�A) = �.Remark 2. Let us recall that every connection � on TM determines such analmost complex structure � on TM that �J = h�; �h� = �J but � is notvertical.Consider the (1,1)-tensor �eld A = aij(x)dxj 
 @=@xi on M as a vector bundlemorphism A : TM ! TM . Then the tangent map TA : T (TM ) ! T (TM ) hasthe following coordinate formxi = xi ; xi1 = aij(x)xj1 ;dxi= dxi ; dxi1 = aikjxk1dxj + aijdxj1 :



290 A.DEKR�ETLet �; dxi1 = �ij(x; x1)dxj be a connection on TM . Let u = (x; u1) 2TxM; X = (x; dx) 2 TxM . Then �(X) = (xi; ui1; dxi;�ij(x; u1)dxj) is the �-lift of X at u 2 TxM . Then TA(�X) = (xi; aijuj1; dxi; [aikjuk1 + aiu�uj (x; u1)]dxj)andTA(�X) � h�(TA(�X)) == (xi; aijuj1; 0; [aikjuk1 + aiu�uj (x; u1)]dxj��ij(x; atsus1)dxj) �� (xi; [aikjuk1 + ait�tj(x; u1)]dxj � �ij(xt; atsus1)dxj) 2 TxM :We get a map ruA : TxM ! TxM; X ! TA(�X)�h�(TA(�X)) which is theclassical covariant derivative in the case of a linear connection �,r�A = (aikjuk1 + ait�tjkuk1 � �ijtatkuk1)dxj 
 @=@xi :Then(7) aikj + ait�tjk � �ijtatk = 0is the coordinate condition for r�A to vanish.Proposition 6. Let � be a skew 2-projectable V B-(1,1)-tensor �eld without tor-sion over a (1,1)-tensor �eld A on M . Let �(��) = ��. Then A is constantwith respect to the covariant derivative according to the linear connection ��, i.e.rA = 0:Proof. According to (4) the �eld � is without torsion i�(8) cikj + aijk = cijk + aikj :For the coordinate functions �ij = 12~ais(csjk � asjk)xk1 of the connection �� thecondition (5) for �(��) = �� reads(9) ~ait(ctsk � atsk)asj = cijk + aijk :Using the equalities (8) and (9) the left side of the condition (7) in the case of theconnection �� gives successively aikj+ait�tjk��ijtatk = aikj+ 12 (cijk�aijk)� 12~ais(csjt��asjt)atk = aikj + 12 (cikj � aikj)� 12~ais(cstj � astj)atk = 12 (cikj + aikj)� 12(cikj + aikj) = 0.The proof is �nished.Proposition 7. Let � be a skew 2-projectable V B-(1,1)-tensor �eld without tor-sion over a (1,1)-tensor �eld A onM . Let � be such a symmetric linear connectionon TM that �(�) = �. Then r�(A) = 0 if and only if � = ��.Proof. The equality (5) readscijk = �iskasj + ais�sjk ; i.e. �ijsask = cikj � ais�sjk as �ijk = �ikj :Putting it in the condition (7) we getaikj + ait�tjk + ais�sjk � cikj = 0 ; i.e. 2ais�sjk = cikj � aikj :Then according to (8) �ijk = 12~ais(csjk � asjk), i.e. � = ��. Then Proposition 6completes our proof.Remark 3. Proposition 7 can be reread as follows. Let � be a symmetric linearconnection and A be a regular (1,1)-tensor �eld on M . Let �(�; A;�A) be the(1,1)-tensor �eld in the sence of Proposition 4. Then �� = � i� r�A = 0.



ON SKEW 2{PROJECTABLE ALMOST COMPLEX STRUCTURES ON TM 291Proposition 8. Let � be a V B-almost complex structure skew 2-projectablewithout torsion over a (1,1)-tensor �eld A on TM . Then �� is a unique linearsymmetric connection such that rA = 0.Proof. By Proposition 3 �(��) = ��. As the connection �� is linear and sym-metric (Lemma 1) then Proposition 7 completes our proof.Corollary. In the case of a V B-almost complex structure on TM skew 2-project-able without torsion over a (1,1)-tensor �eld A on M there is a unique linearsymmetric connection � such that �(�) = �; r�A = 0. This connection is justthe connection ��. Consequently A is an integrable almost complex structure onM , see [9].Remark 4. Let � be a connection on TM . There is the vertical prolongation V �of � which is a connection on V TM ! M , see [7] in the general case of a �brebundle. In the induced local chart (xi; xi1; 0; �i) on V TM its horizontal subbundleHV � is determined by the equationsd�i = �ijk1�kdxj ; dxi1 = �ijdxj :Analogously to the Proposition 6 it is easy to show that if � is a skew 2-projectable (1,1)-tensor �eld on TM without torsion such that �(��) = �� thenT�(HV ��) � HV ��.By direct calculation in the case of a skew 2-projectable (1,1)-tensor �eld � weobtain for the Nijenhuis tensor [�; �]12 [�; �] = (aisuauj + aikakjs)dxj ^ dxs 
 @=@xi++ f(cisuauj + cisu1cuj + ciuaujs � aiuaujs)dxj ^ dxs+(10) + (aiuaujs + aijuaus + aiucusj1 � cisu1auj )dxj1 ^ dxsg 
 @=@xi1 :This formula and the well known condition for A to be an integrable almostcomplex structure, see for example [9], giveProposition 9. The Nijenhuis tensor [�; �] of a skew 2-projectable (1,1)-tensor�eld � over a (1,1)-tensor �eld A on M is a vertical tangent valued if and only if[A;A] = 0, i.e. in the case when � is moreover an ACS i� A is an integrable ACS.Proposition 10. Let � be an almost complex structure on TM skew 2-project-able and symmetric over an integrable almost complex structure A on M . Thenthe Nijenhuis tensor [�; �] is a semibasic vertical valued 2-form on TM .Proof. By Proposition 9 [�; �] is vertical valued. Using the equalities (1) and (4)where [�; J ] = 0 we get for (10):Bijs = aiuaujs + aijuaus + aiucusj1 � cisu1auj = aiu(cusj1 � cujs1 + aujs � ausj) = 0 ;i.e. [�; �] = Hijsdxj ^ dxs 
 @=@xi1 is semibasic and vertical valued.



292 A.DEKR�ETCorollary. If � is a symmetric V B-almost complex structure skew 2-projectableover A then [�; �] is a semibasic vertical valued 2-form on TM .Remark 5. Let us recall the complete lift �c of a connection � on TM , see for ex-ample [8]. If h� = dxi
@=@xi+�ij(x; x1)dxj
@=@xi1 is the horizontal formof a con-nection � then T i1�i2�Th��i2�T i1 = dxi
@=@xi+dxi1
@=@xi1+�ij(x; �)dxj
@=@�i++[(�ijk(x; �)xk1 + �ijk1(x; �)�k)dxj + �ij(x; �)dxj1]
 @=@�i is the horizontal form ofthe connection �c on pTM : T (TM ) ! TM , where i1 and i2 are the canonicalinvolutions on TTM and TT (TM ); i1(x; x1; �; �) = (x; �; x1; �). If � is linear andwithout torsion then also �c is linear and without torsion. In the case of a sym-metric V B-almost complex structure � skew 2-projectable over an ACS A on Mthe connection �� is linear and symmetric then the complete lift �c� is also linearand symmetric. This means that there is on TM such an ACS which determinesa connection on TM , i.e. linear connection on pTM : T (TM ) ! TM withoutauxiliary geometrical objects. Remember that in the case of an ACS on M sucha connection has not to exist. We will comment this situation in detail. LetF : TM ! TM be an ACS on M and � � h� : TTM ! TTM be a linear con-nection. Let f :M ! N be a local di�eomorphism. Recall that FM ; FN or �M ;�Nare f-related if FN �Tf = Tf �FM or �N �TTf = TTf ��M . By [4] there is not anylinear connection � which can be constructed from an ACS F only by a naturaloperator � which means that if FM ; FN are f-related then also �(FM ); �(FN ) aref-related. Certainly in the case of a symmetric V B-almost complex structure �skew 2-projectable over an ACS A onM the operator � : �! �c� is "M -natural",i.e. if �N �TTf = TTf ��M then also �(�N )�TTTf = TTTf ��(�M ). But � is not"TM -natural" because if f : TM ! TN is an arbitrary local di�eomorphism thenTf ��M �Tf�1 need not be an V B-almost complex structure on TN . Readers arekindly refered to [7] for more detail information on theory of natural operations.Example. Let A = aij(x)dxj 
 @=@xi be a regular (1,1)-tensor �eld on M . LetA = aijdxj 
 @=@xi1 be the semibasic V TM -valued (1,1)-form on TM determinedby A. Let S = xi1@=@xi + �i(x; x1)@=@xi1 be a semispray. Then the Lie derivative� � LSA = �aijdxj 
 @=@xi + [(aijkxk1 � �ik1akj )dxj + aijdxj1]
 @=@xi1is a skew 2-projectable (1,1)-tensor �eld � on TM over �A. If S is a spray, i.e.LV S = S, then LSA is a V B-form.Recall, see [4], that the Lie derivative LSJ determines the connection �S withthe local functions �ij = 12�ij1 :As �ij = �12~ais(2asjkxk1 � �sk1akj ) are the local functions of the connection �LSAthen it is easy to see, that �(�LSA) = �S :If A = Id���TM then �LSA = �S .



ON SKEW 2{PROJECTABLE ALMOST COMPLEX STRUCTURES ON TM 293We will discuss the conditions for LSA to be an ACS on TM . In this case thesecond equation of (1) readsais�sj1 � �is1asj = �2aijkxk1 :The map y ! Ay�yA is singular and so the last equation has not to be solvable.Therefore if A is an ACS on M then such a semispray S that LSA is an ACS onTM has not to exist.If A is an ACS on M and �S is the connection determined by a semispray Sthen by the Proposition 4 �(�S ; A;�A) is an ACS on TM .References[1] Cabras, A., Kol�a�r, I., Special tangent valued forms and the Fr�olicher-Nijenhuis bracket, Arch.Mathematicum (Brno) Tom. 29 (1993), 71{82.[2] Dekr�et, A., Almost complex structures and connections on TM , Proc. Conf. Di�erentialGeometry and Applications, Masaryk Univ. Brno (1996), 133{140.[3] Gancarzewicz, J., Mikulski, W., Pogula, Z., Lifts of some tensor �elds and connections toproduct preserving functors, Nagoya Math. Journal 135 (September 1994), 1{41.[4] Gri�one, J., Structure presque-tangent et connections I., Ann. Inst. Gourier (Grenoble) 22(1972), 287{334.[5] Jany�ska, J., Remarks on the Nijenhuis tensor and almost complex connections, Arch. Math.(Brno) 26 No. 4 (1990), 229{240.[6] Kobayashi, S., Nomizu, K., Foundations of di�erential geometry II., Interscience publishers,1969.[7] Kol�a�r, I., Michor, P.W., Slov�ak, J., Natural operations in di�erential geometry, Springer-Ver-lag, 1993.[8] Yano, K., Ishihara, S., Tangent and cotangent bundles, M. Dekker Inc. New York, 1973.[9] Yano, K., Di�erential geometry on complex and almost complex spaces, Pergamon Press,New York, 1965.Department of MathematicsTU ZvolenMasarykova 24960 53 Zvolen, SLOVAKIAE-mail: dekret@vsld.tuzvo.sk
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