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CONJUGACY CRITERIA FOR SECOND
ORDER LINEAR DIFFERENCE EQUATIONS

ONDREJ DoSLY, PAVEL REHAK

ABSTRACT. We establish conditions which guarantee that the second order differ-
ence equation

A%z + prergr =0

possesses a nontrivial solution with at least two generalized zero points in a given
discrete interval

I. INTRODUCTION.

Consider the second order difference equation
(1.1) A’z + pewigr = 0,

where A2z, = A(Azy), Axg = #k41 — o) 1s the usual forward difference and py,
k € 7Z,1s a real-valued sequence. The aim of this paper is to investigate oscillatory
properties of (1.1), in particular, we look for conditions which guarantee that (1.1)
possesses a nontrivial solution having at least two generalized zero points in a
given interval (for the definition of the generalized zero point of a solution of (1.1)
and related concepts, see the next section).

In the last years, a considerable effort has been made to establish oscillation
theory of equations (1.1) similar to that for differential equations

(1.2) y' +p(t)y =0,

see the recent monographs [2,3,10] and the references given therein. Tt has been
shown that in some aspects these theories are quite analogical and, on the other
hand, that to treat some problems concerning (1.1), one has to use somewhat
different methods than for differential equations, see [4,5,8,9].

Oscillation theory of (1.2) has a long history and was started by the famous
paper of Sturm [16]. Since that time, many papers (some of them already in the
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past century) have been devoted to the investigation of conditions which guarantee
that (1.2) is oscillatory, i. e., any solution of this equation has infinitely many zero
points, see e. g. [15] and the survey paper [18].

On the other hand, the investigation of conjugacy of (1.2) in a given interval
(i. e., the existence of a nontrivial solution with at least two zero points in this
interval) was started only relatively recently in the paper of Tipler [17]. He proved,
among others, that (1.2) is conjugate in R = (—o0, o0) provided fooo p(t)dt > 0.
This result was improved in subsequent papers [6,12,13] and finally in [7] it was
proved that (1.2) is conjugate in an arbitrary interval I = (a,b) provided there
exist ¢ € (a,b) and 1,2 > 0 such that

b T t
(1.31) €1 exp 2 p(s) —e1 dt dx> g,
cc cx ct T
(1.32) €9 exp 2 p(s) +e2 dt dx> 3

This conjugacy criterion is based on the combination of the Riccati transformation
and the fact that (1.2) is conjugate in (a,b) if and only if there exist linearly
independent solutions z,y of this equation such that

b
o

o #() + 3 (1)

where w = xy’ — x'y is the Wronskian of z,y. The function

(1.4) dt >,

t
W

Fn I

is sometimes called zero counting function (in the Boravka’s transformation theory

a(t) =

it is called phase function) since each crossing of its graph with a multiple of =
gives a zero point of any solution y satisfying y(c) = 0.

As it is pointed out in [3, p. 422] and explained in more detail in [8], no full
discrete analogy of this function is known till now. However, using a suitable
modification of the “continuous” method, we will be able to prove a discrete version
of (1.3).

The paper 1s organized as follows. In the next section we recall basic properties
of difference equation (1.1). The main results of the paper, conjugacy criteria for
(1.1), are given in Section III. In addition to the above mentioned discrete version
of (1.3) we “discretize” also one of conjugacy criterion of Tipler [17]. The last
section is devoted to remarks and comments concerning possible extensions of the
results presented in this paper.

II. AUXILIARY STATEMENTS.

In this section we recall basic results of oscillation theory of equations (1.1).
These results are essentially the same as for differential equation (1.2) since both
these equations may be regarded as particular cases of the integral equation

t 1 t 1 s
y(t) =yla) +r(a)y(a) —=ds+ —=  y(r)dm(r)

a 7(5) a 7(8) 4
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with Riemann-Stiltjes integrals, see [1]. However, as pointed out in that paper, in
some cases this general theory does not apply to (1.1) and special methods have
to be used.

In the next treatment, when speaking about an interval [m, n], where n,m € Z,
we actually mean the discrete set [m, n]NZ. An interval (m, m+1], m € Z,is said to
contain a generalized zero point of a solution y of (1.1) if ym # 0 and Ym Ym41 < 0.
If (m,m 4+ 1], (n,n 4+ 1], m < n, contain generalized zero points of a solution y
of (1.1), then any other solution of this equation has at least one generalized zero
point between m and n + 1. Equation (1.1) is said to be disconjugate in [m,n] if
any solution of this equation has at most one generalized zero in (m, n+ 1] and the
solution g satisfying @, = 0 has no generalized zero in (m,n + 1], in the opposite
case (1.1) is said to be conjugate in [m, n], see e. g. [10].

If y is a solution of (1.1) which has no generalized zero in (m, n+1], the sequence
Ayy
Yk

wg = solves in [m, n] the discrete Riccati equation

2

w
2.1 A ko —
(2.1) R O v 0

with 14wy > 0. This means that (1.1) is disconjugate in a given (discrete) interval
if and only if (2.1) has a solution w which satisfies 1 4+ w > 0 in this interval. The
last inequality, which has no “continuous” analogy, reflects the fact that in the
discrete case we need not only to eliminate “real” zero points of solutions but also
sign changes.

Now let us explain what is the main difficulty in extending conjugacy criteria
based on (1.4) to difference equation (1.1). After some computations, see also
below given Lemma 1, one can find that the only “discrete candidate” which
could play the role of the function « in the discrete case is the sequence

W
Ve = y W = Yk4+1Tk — TE4+1Yk,
TeTh+1 + Y Yk+1

z,y being linearly independent solutions of (1.1). However, in contrast to the
continuous case where x? 4+ y* > 0, the sequence 417 + yx41yx may change its
sign or may be even identically zero as shows the simple example of the equation
Ay + 2yp1 = 0.

We finish this section with two auxiliary statements playing an important role
in the proof of Theorem 1 which is the main result of our paper.

Lemma 1. Let @ = {ay, k € Z},y = {yr, k € Z} be any pair of sequences
such that 7312@ + yg > 0 for k € Z, denote wi ‘= TrYp41 — Th41yk and let zp =

(zg + iyg ) (27 + yg)_%. Then

el + YeYrer +oiwp
hihi 41

(22) Zk41 =

where hy = (v} + yg)%.
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Proof. By a direct computation we have

Tpypt + W1 Tk 1Yk
Zk4+1 — Rk = A - A =
k41 k

(Zrg1 + tyrt1) b (2r — iyx)

i+ iy (e + iYsg1) e

hi (xr + iyr ) hrt1 i hEhg 41
(@rrt1 + YeYrt1) + U(@RYet1 — Top1¥s) | o=
hiy1hy
Tprql + YrlYhp1 +00p | 2. O
hiy1hy

Lemma 2. Let x,y, z be the same as in Lemma 1 and suppose that wy > 0. Then
0 < argzry1 — argz, < m.

Proof. From (2.2) argzpy1 — argzy = arg (2x®k41 + Ys¥k+1 + twy) and since
wg > 0 we have the statement. O

III. CONJUGACY CRITERIA.
We start this section with a discrete version of the conjugacy criterion (1.3).

Theorem 1. Suppose that there exist €1 > 0,e9 > 0 such that

n

(3.1) limsup  arctan B > E,
n—doo o 20%(17,51) 4
! € T
3.2 lim su arctan ————— > —,
( ) n—>—oopk:n 26!@ (p,62) 4
where
ag=1+¢q, ﬁ1:1—|—62,
k-1 k-1 j—1 2
ap = ag(p,e1) = €1 — pi+1 g1 — pi+1 for k> 1,
=0 7=0 =0
2
-1 1 -1
Br = Br(p,e2) = €2 — pi+1 €2 — pit+1 for k < 0.
i=k—1 j=k41 i=j—1

Then (1.1) is conjugate in Z.

Proof. In the first part of the proof we consider the interval [0, +00) and we will
show that the solution # of (1.1) given by the initial conditions zg = 1 = 1 has a
generalized zero in [2,00). Let y be another solution of (1.1) given by the initial
condition yop = 1, y1 = 1 + €1 and let z; be the same as in Lemmas 1 and 2.
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Suppose, by contradiction, that z has no positive generalized zero, i.e. z; > 0
for k € [2,400). Then yi > xp for k > 1. Indeed, if y,, < 24, for some m € N,
then the solution # = y — x satisfies o = 0, 1 = £1 > 0 and Z,, < 0. But this
contradicts to the separation theorem for generalized zeros of solutions of (1.1)
since z is positive throughout N.

Denote by wy = 2pxk41 + YsYr+1. By Lemma 1 we have

wy + 161
Zk+1 = 7~k
hihggr
and hence
k k
. &1 T
arg zp41 = arg(w; + ie1) + arg zp = arctan — + T
W
=0 =0 J

Further, denote g, = 2

equation (2.1). Hence Agr < —py, and thus ¢ < ¢o — f:_ol pi = €1 — f:_ol pi- It
follows

E—1 E—1 j—1
= (g +1)< &1 —  pitl
7=0 7=0 =0
Consequently,
1 1 1
—_— > >

wr T 2ykykgr 200
Since (3.1) holds and arg zo = § < %, there exists m € NU {0} such that arg z,, <

5 and

T &1
arg Zm4+1 > — + arctan —— > —.
4 2
k=0
Since 0 < argzm41 — arg z;m < 7, by Lemma 2 and the fact that arg z,, > —3,
we have arg zm41 < 3777, hence #,, > 0 and zm41 < 0 which means that z has a
generalized zero in (m, m 4+ 1], a contradiction.

In the second part of this proof we consider the interval (—oo, 1]. We define
the backward difference operator A by Ayp = yp_1 — yk. Since Azyk A2y _o,
equation (1.1) takes the form A2y, 4 pr_oyr—1 = 0. Now, let § be the solution
of (1.1) given by the initial conditions y1 = 1, o = 1 + €2 and let « be the same
as in the previous part of the proof. Again, we will show that the assumption
xzi > 0 for all & < 0 leads to a contradiction. Denote hy = (xF + gg)% and let

Zr = (x5 + zyk) ! Similarly as in Lemma 1 we have
_ Wy, — 169 _ _ _
Zp = =———=——2Zk-1, Wk = Tp-1Tk + Yk—1Yk
hi_1hg
and hence
_ hgheoy hihg—1 () + igs) _
o1 = — — 2 = —— - — 3k =
Wy — €9 (Tp—12k + Uo—1Uk)? + (p—1Uk — TiYk—1)
his—1hi (0 + 1e9) Wy +igs

— — — k= ————Zk-
xlzc(xlzc—l—i_yg—l)—i_yg(xlzc—l+yl§—1) hi—1hy
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Similarly as in the first part of the proof, the assumption xj > 0 for & < 0 implies

yg > xp > 0 for all negative integers. Let g = %. By a direct computation we
have

A i

Agy = —pr—2 — — < —pr_2

L+qr —
and hence
1 1 1
Uk = 14+ G)mn < 1- Pico+ €2
j=k+1 j=k+1 i=j+1

for k£ < 0. This implies, in the same way as for k > 1,

_ ! _ . _ ! E9 ™
arg Zp_1 = arg(w; + te2) + argz; = arctan — + 1 >
=k J=k Wy
1
> arctan 2 + il
T 26 (p,e2) 4

Now, (3.2) contradicts to > 0 for k& < 0 in the same way as in the first part of
the proof. Consequently, the solution z has at least two generalized zeros, i. e.,
(1.1) is conjugate on Z. O

Remark 1. If we replace assumptions of Theorem 1 by the assumption:
There exist 1 > 0, €2 > 0 and the integers m = m(e1) € [0,00), n = n(ez) €
(=00, 1] such that

" arctan SL > T 1 tan —2 > ©
arctan — > —, arctan —— > —|
k=0 20[k 4 k=n 26k 4
the statement of Theorem 1 remains valid.
Corollary 1. Suppose that
n j—1
. lim inf ;=
(3.31) Iminfo——  pi=ien> 0,
j=01:¢=0
1 -1
(3.32) lnlg_n;of meen SR p; =:co > 0.
j=ni=j—1

Then (1.1) is conjugate in Z.

Proof. Suppose that (3.31) holds. There exists m € N such that
%cl(n + 1) whenever n € (m, o). Then

1]
(S
=
\4

n
7=0
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Hence
n j—1
0 < exp —c1 — pi <1
7=0 1=0
and consequently
n 3 j—1
0< exp ch — pi <.
7=0 i=0

Now let g1 = %cl and d € (m + 1,00). We have

d t ‘o
arctan . =
E—1 E—1 1
k=0 2(61 - i=0 Di + 1) 7=0 (61 - ‘Z:O Pi + 1)2
t =
= arctan - .
2 1 E—1 -1 Z
k=0 2 j:O(El — iLopitl) j:0(61 — iLopitl)
¢ €
1
>R+ arctanQ - T, ke T T
k=m+1 7=0 eXp(El 7=0 pl) 7=0 eXp(El 7=0 pl)
¢ €
1
=R+ arctan - - >
3 -1 k—1 3 -1
k=m+1 2 j=0 eXp(ch_ Z:O bi— %) j=0 eXP(ch_ Z:O bi — %)
d
€1
>R+ arctan % % — — +oo
—C1 —C1
k=m+1 2 j=0CXP 5 j=0€XP
as d = +oo, where
" €
1
R= arctan - .
E—1 E—1 1
k=0 2(61 - i=0 Di + 1) 7=0 (61 - ‘Z:O Pi + 1)2
Similarly we prove that
1
€2
arctan =1 i =1 3
k=n Aea— jy pi+l) opp(ea— T pi+ D)
tends to infinity if n — —oo and g3 = %, d

The next statement is a discrete version of Theorem 6 of [17] and gives a suffi-
cient condition for conjugacy of (1.1) in the half-bounded interval [n, o).

Theorem 2. Suppose that pi > 0 for k € N. A sufficient condition for conjugacy
of (1.1) in an interval [n,+o0), n € N, is that there exist integers |, m with n <
! < m such that
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Proof. We will show that the solution « of (1.1) given by the initial condition
2p = 0, £p41 = 1 has a generalized zero point in (n, +00). For assume it does not.
Then without loss of generality we can assume 2 > 0 in (n,4+00) and Az > 0 in
[, +00), since if Az < 0 at some point in (n, +00), we would have a generalized
zero in (n, +00) by the condition py > 0. From (1.1) we obtain

m
Azxppr = Az — Tr41Pk-
k=l

Since pr > 0, using the discrete mean value theorem we have

il :u>A1‘K>A$l
{—n l—n — -

with some k € [n+ 1,1 — 1]. Thus ; > (I — n)Aw;. Hence

m m
Arp—  wppaps <Az —  zpy <
k=l k=l
m m
< Az — (I —n)Ax pr=Az; 1—(—n) D
k=l k=l

By hypothesis, the factor in brackets is negative. If Ax; > 0, then Axp4q <0,
implying a generalized zero in (m 4+ 1,00). If Az; = 0, then Az, < 0 since

s—; Th+1Px > 0 by assumption. In either case, x has a generalized zero point in
(m+1,00) and so (1.1) is conjugate in [n, co). d

IV. REMARKS.

(i) Our main result, the conjugacy criterion given in Theorem 1, is essentially
based on the application of the Riccati transformation. In the continuous case,
another powerfull tool of oscillation theory is the variational principle consisting
in the relation between disconjugacy of the equation

(4.1) (r()y) +pt)y =0
in the interval [a, b] and positivity of the quadratic functional

Jy) = ry?-p)y’ dt

a

in the class of functions satisfying y(a) = 0 = y(b). In the discrete case we have a
similar statement, equation (1.1) is disconjugate in the interval [m, n] if and only
if
n
(Ayk)? — pryipr >0

k=m



DISCRETE CONJUGACY CRITERIA 309

for every nontrivial y = {%}ZI# satisfying ¢ym = 0 = yn41. The application of
the continuous variational principle usually gives weaker results than the Riccati
technique. In the discrete case we have a rather different situation. Using the
variational principle it is not difficult to prove that (1.1) is conjugate in Z whenever

oQ

(4.2) pr >0

k=—o0

(the proof of this statement is essentially the same as that given in [12] for (4.1)).
If p, = 0 except for one index, say n € Z, where p, > 0, then (4.2) is trivially
satisfied hence (1.1) is conjugate in Z. However, an easy reasoning shows that
Theorem 1 does not apply in this simple case.

(i1) Theorem 1 gives sufficient conditions for conjugacy of (1.1) in Z. Remark
1 given below Theorem 1 shows that conditions of this theorem may be easily
modified to give the conjugacy criterion in any (sufficiently long) subinterval of Z.

(iii) Throughout the paper we investigate oscillation properties of solutions of
second order equation of the form (1.1). Instead of this equation consider a more
general equation

(4.3) A(reAyr) + pryrs1 = 0.
If 74 > 0 in the interval under consideration, say [0, N], then the transformation

1
hiry’

(44) Y = hkuk, with ho = 1, hk+1 =

transforms (4.3) into the equation of the form (1.1). Indeed, by a direct compu-
tation one can verify the identity

hig1 [A(reAys) + pryes1] = Alrehg 1 heAug) + hip1 [A(rgAhg) + prhgsa]uesa

which yields the required transformation. If the sequence 7, changes its sign, the
transformation (4.4) does not preserve the sign of the transformed sequences and
one has to investigate (4.3) directly. However, a closer examination of the proofs of
Lemmas 1,2 and of Theorem 1 shows that the sign changes of r; make difficulties
and it remains an open problem whether Theorem 1 extends to the more general
equation (4.3). Note also that in contrast to the continuous oscillation theory of
the second order differential equations (4.1) which requires the function r to be
positive, oscillation theory of (4.3) may be established under a weaker assumption

i £ 0, see [2].
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