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ARCHIVUM MATHEMATICUM (BRNO)Tomus 35 (1999), 21 { 27CHARACTERIZATIONS OF INNER PRODUCTSPACES THROUGH AN ISOSCELESTRAPEZOID PROPERTYC. Alsina, P. Cruells and M. S. TomásAbstract. Generalizing a property of isosceles trapezoids in the real planeinto real normed spaces, a couple of characterizations of inner product spaces(i.p.s) are obtained. 1. IntroductionWhen working in non Euclidean geometries, most of the "natural" geometricproperties may fail. In a general normed space some of these properties hold justwhen the space is an inner product space (i.p.s.). Some of these properties maycharacterize the space as an i.p.s. In the 3-dimensional case, this means that ourworld is as natural as we always have thought. The study of characterizations isa fruitful area and hundreds of them may be found in the literature [1, 2, 3, 4].In this paper we consider a property, proved by F. Suzuki [5], of isosceles trape-zoids in the real plane, we translate this property into a real normed space andthen we study how the obtained condition can characterize the norm as a normderivable from an inner product. We will translate this property in two di�erentways, obtaining two di�erent characterizations of inner product spaces.Suzuki's property states that, considering an isosceles trapezoid ABCD in thereal plane, R2, (see Fig. 1) for any point S in R2 we have:SA2 � SD2AD = SB2 � SC2BC(1)1991 Mathematics Subject Classi�cation. 46C99.Key words and phrases. inner product space, norm derivative �0�, heights.Received October 1, 1997.
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Fig. 1In order to translate this property into a real normed space we will consider thetwo functions �0� : E �E ! R de�ned by�0�(x; y) = limt!0� kx+ tyk2 � kxk22twhich generalize the inner product in a real normed space. These two functionsare half of the one-sided derivatives of the square of the norm at the point x inthe direction of y. The limits exist by the convexity of the norm (see [4]).The mappings �0� play a crucial role in characterizing inner product spaces(see [1, 2, 3, 4]). Indeed, when the norm derives from an inner product (E;<;>),then �0�(x; y) =< x; y >.We quote here some elementary results concerning the functions �0�:(i) �0�(x; x) = kxk2 and j�0�(x; y)j � kxkkyk;(ii) �0+(�x; y) = �0+(x; �y) = ��0+(x; y), � � 0;(iii) �0+(�x; y) = �0+(x; �y) = ��0�(x; y), � � 0;(iv) �0+(x; �x+ y) = �0+(x; y) + �kxk2;(v) �0�(x; y) � �0+(x; y).If any of the following two conditions is veri�ed then the norm in E derives froman inner product, i.e.: E is an i.p.s.(I) �0+(u; v) � �0+(v; u) for all u; v unit vectors in E;(II) �0+(x; y) = �0+(y; x) for all x; y in E.The above two conditions are the ones we will use in this paper to prove thecharacterization of inner product spaces. Some other chracterizations of i.p.s thatuse the functions �0� may be found in [4].2. A first characterization of inner product spacesWe will �rst translate equality (1) into an inner product space consideringvectors x; y; z and w as in �gure 2.
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Fig. 2Then equation (1) becomes:kzk2 � kx� zk2kxk = kz � yk2 � kw � zk2kw � yk(2)Moreover, the isosceles condition for the trapezoid will be imposed as follows:kw � xk = kyk and x = �(w � y) with � � 0which implies � = 1 or � = kxk2kxk2 � 2 < x; y >The case � = 1 means that the two parallel sides of the trapezoid have the samelength and then the trapezoid becomes a rectangle. This case was used to de�nein [3] an orthogonality relation in real normed spaces.The other possibility for � is now introduced in equation (2) obtaining:kzk2 � kx� zk2kxk = kz � yk2 � kxk2�2<x;y>kxk2 x+ y � z2kxkkxk2�2<x;y>kxk2(3)Now we rewrite this equation in a real normed space, using the map �0+ as thegeneralization of the inner product. Thus, equation (3) becomes in a real normedspace: kxk2(kzk2 � kx� zk2) �kxk2 � 2�0+(x; y)� == kxk4kz � yk2 � (kxk2 � 2�0+(x; y))x + kxk2(y � z)2(4)Theorem 1. Let (E; k � k) be a real normed space. Then E is an i.p.s. if, andonly if, for all vectors x; y; z in E equation (4) holds.Proof. To prove this theorem we proceed in four steps. First, in equation (4) wesubstitute x by tx with t > 0 and z by �y. By a straight forward computationand making t decrease down to 0 we obtain:kxk2�0+(y; x)�0+(x; y) = kxk4kyk2 � kxk2y � �0+(x; y)x2Taking u; v unit vectors in E, i.e. u; v 2 SE , this equality becomes:�0+(v; u)�0+(u; v) = 1� kv � �0+(u; v)uk2



24 C. ALSINA, P. CRUELLS, M. S. TOMÁSin particular u+vku+vk 2 SE and changing v by u+vku+vk we obtain:1� �0+(u; v)�0+(v; u) = ku+ vk2 � (1 + �0+(u; v))�0+(u+ v; u)(5)Secondly, we will use equation (4) again, where we substitute z for y:(kxk2 � 2�0+(x; y)) �kxk2 + kyk2 � kx� yk2 � 2�0+(x; y)� = 0From this equation we will obtain two di�erent results, by the substitution: x !u+ v and y ! u, where u; v 2 SE we have:�0+(u + v; u) = ku+ vk22(6)and by the substitution: x! tx with t > 0 and doing the limit when t tends to 0,yields: �0+(x; y) � ��0+(x; y)� �0�(y; x)� = 0(7)In the third step, we prove that if a couple u; v of unit vectors veri�es �0+(u; v) =0 then �0�(v; u) = 0 is veri�ed as well. Assuming �0+(u; v) = 0, equation (5)becomes �0+(u + v; u) = ku+ vk2 � 1, then by (6) we have that �0+(u+ v; u) = 1,and therefore from (7) it is �0+(u + v; u) = �0�(u; u + v) = 1 + �0�(u; v) = 1, so�0�(u; v) = 0 and by (7), we obtain �0+(v; u) = 0. From these results followingexactly as we have done from the begining of this third part of the proof we arriveto �0�(v; u) = 0.Finally we use the previous result and the property (v) we quoted for �0+:�0+(u; v) = �0�(v; u) � �0+(v; u)Since this inequality holds for all u; v 2 SE then E must be an i.p.s. by condition(I). 3. A second characterization of inner product spacesWe will now translate the property of the isosceles trapezoid into a real normedspace in a di�erent way. To do this we consider the property (1) in an i.p.s. Leth(a; b) be the height vector of a triangle (see Fig. 3a).Using the height of the triangle formed by the two vectors �y; x � y (see Fig.3b), equation (1) can be written as:(8) kzk2 � kx� zk2kxk = kz � yk2 � y � z + (kxk � 2ky + h(�y; x � y)k) xkxk2kxk � 2ky + h(�y; x � y)k
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Fig. 3a Fig. 3bIn this case, the obstacle to translate this equation into a real normed spaceis the height, h(�y; x � y). We will use one of the several generalizations thatAlsina, Guijarro and Tomás (see [1, 2]) have de�ned for heights in a triangle inreal normed spaces: h(x; y) = y + kyk2 � �0+(x; y)kx� yk2 (x� y)Let f be the following expression:f(x; y) = 1� 2 ����kxk2 + kyk2 � kx� yk2 � �0�(y; x)kxk2 ����(9)Equation (8) in the real normed space becomes:(kzk2 � kx� zk2) � f(x; y) = ky � zk2 � ky � z + f(x; y)xk2(10)In this case, the characterization is as follows:Theorem 2. Let (E; k � k) be a real normed space such that equation (10) holdsfor all vectors x; y in E which satisfy f(x; y) 6= 0 and �0+(x; y) � 0 then E is ani.p.s.Note: The negation of the �rst of these two conditions, f(x; y) = 0, correspondsto the case that the short parallel side of the trapezoid vanishes. Observe thatequation (10) vanishes under this condition, too. The second condition, �0+(x; y) �0, is related to the angle of x and y.Proof. Consider x; y 2 E such that f(x; y) 6= 0 and �0+(x; y) � 0. Rewritingequation (10) for z = x+ y we obtain:(kx+ yk2 � kyk2) � f(x; y) = f(x; y) � (2� f(x; y)) � kxk2(11)Dividing by f(x; y) and using the expression (9) of f , the above equation becomes:kx+ yk2 � kxk2 � kyk2 = 2 ��kxk2 + kyk2 � kx� yk2 � �0+(y; x)��(12)Observe that limt!0+ f(x; ty) = 1, so we can state that for any t > 0 small enoughthe couple x; ty satisfy equation (12) too. Therefore, we can change y by ty under



26 C. ALSINA, P. CRUELLS, M. S. TOMÁSthe same conditions, and equation (12) can be rewritten, after being divided by2t, as:kx+ tyk2 � kxk22t � tkyk22 = 2 ����kx� tyk2 � kxk2�2t + tkyk22 � �0�(y; x)2 ����making t decrease to 0, then we have�0+(x; y) = 2 �����0�(x; y) � 12�0�(y; x)����Similarly if we rewrite equation (10) for z = y and consider the same remarksas before, substituting y by ty, with t > 0, dividing by 2t and calculating the limitwhen t! 0+ we obtain:�0�(x; y) = 2 �����0�(x; y) � 12�0�(y; x)����We arrive at the conclusion that for all x; y in E such that f(x; y) 6= 0 and�0+(x; y) � 0. �0+(x; y) = �0�(x; y) 2 ��0�(y; x); 13�0�(y; x)�(13)Consider x; y in E such that �0+(x; y) � 0. Using the same reasoning as we didabove, we can state that for any t > 0 small enough f(x; ty) 6= 0, so equation (13)becomes: �0+(x; ty) = �0�(x; ty) 2 ��0�(ty; x); 13�0�(ty; x)�(14)Dividing by t we obtain that for all x; y in E such that �0+(x; y) � 0 equation (13)is satis�ed as well.Using the above result we will prove that for all x; y in E such that �0+(x; y) � 0,�0+ is a symmetrical map. Let x; y be in E such that �0+(x; y) � 0. By (13) wehave that �0�(y; x) � 0 too, and because of �0� � �0+ we deduce that �0+(y; x) � 0,so, using (13) again for the couple y; x 2 E we have:�0+(y; x) = �0�(y; x) 2 ��0�(x; y); 13�0�(x; y)�(15)And from (13) and (15) we can state that for all x; y in E such that �0+(x; y) � 0then �0+(x; y) = �0+(y; x).Finally, for all x; y in E such that �0+(x; y) � 0 we have that �0+(�x; y) � 0 andusing (13) and (15) once more we obtain the symmetry of �0+ for all x; y in E, andthen, by condition II, E must be an i.p.s.
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