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Tomus 35 (1999), 255 – 274

EXISTENCE OF SOLUTIONS FOR NONLINEAR PARABOLIC
PROBLEMS

Nikolaos Halidias and Nikolaos S. Papageorgiou

Abstract. We consider nonlinear parabolic boundary value problems. First
we assume that the right hand side term is discontinuous and nonmonotone
and in order to have an existence theory we pass to a multivalued version by
filling in the gaps at the discontinuity points. Assuming the existence of an
upper solution φ and of a lower solution ψ such that ψ ≤ φ, and using the
theory of nonlinear operators of monotone type, we show that there exists a
solution x ∈ [ψ, φ] and that the set of all such solutions is compact in W pq(T ).
For the problem with a Caratheodory right hand side we show the existence
of extremal solutions in [ψ, φ].

1. Introduction

Let T = [0, b] and Z ⊆ RN a bounded open set with a C1-boundary Γ. Let
Dk = ∂

∂zk
, k ∈ 1, 2, ..., N and D = grad. In this paper we consider the following

nonlinear parabolic boundary value problem:

(1)


∂x

∂t
−

N∑
k=1

Dkαk(t, z, x,Dx) + αo(t, z, x,Dx) = f(t, z, x(t, z)) on T × Z .

x(0, z) = xo(z) a.e. on Z, x |T×Γ= 0 .


We do not assume that f(t, z, ·) is continuous. Thus problem (1) need not have

a (weak) solution. In order to have an existence theory, we pass to a multivalued
version of (1) which roughly speaking is derived by filling in the gaps at the
discontinuity points of the function f(t, z, ·). For this purpose, we introduce the

1991 Mathematics Subject Classification: 35K55.
Key words and phrases : upper and lower solutions, weak solution, evolution triple, compact

embedding, distributional derivative, operator of type (S) +, operator of type L − (S)+, L−
pseudomonotone operator, multivalued problem, extremal solutions, Zorn’s lemma.

Received November 12, 1998.



256 N. HALIDIAS AND N. S. PAPAGEORGIOU

following two functions:

f1(t, z, x) = lim inf
x′→x

f(t, z, x
′
) = lim inf

ε↓0 |x′−x|<ε
f(t, z, x

′
)

and f2(t, z, x) = lim sup
x′→x

f(t, z, x) = lim sup
ε↓0 |x′−x|<ε

f(t, z, x
′
) .

Then instead of (1) we deal with the following nonlinear parabolic partial dif-
ferential inclusion:

∂x

∂t
−

N∑
k=1

Dkαk(t, z, x,Dx) + αo(t, z, x,Dx)

∈ [f1(t, z, x), f2(t, z, x)] on T × Z .
x(0, z) = xo(z) a.e. on Z, x |T×Γ= 0 .

(2)

We solve (2) using the method of upper and lower solutions. More precisely
assuming the existence of an upper solution φ and of a lower solution ψ, we show
that problem (2) has a solution x in the order interval [ψ, φ] and the set of all
such solutions is compact in Wpq(T ). Subsequently using stronger hypotheses on
the functions αk(t, z, x, y), we show that problem (1) with a Caratheodory f has
extremal solutions in K = [ψ, φ].

Our work is related to those by Deuel-Hess [9], Boccardo-Murat-Puel [2] and
Mokrane [19]. In these papers ψ, φ ∈ W1,∞(T, L∞(Z)), f = 0 (so there is no need
to pass to a multivalued problem) and the authors do not address the question
of extremal solutions in [ψ, φ]. Problems with discontinuities have been studied
primarly for stationary (elliptic) equations, using a variety of methods. These
different approaches can be traced in the works of Chang [5], Costa-Goncalves
[7] (where the nonsmooth critical point theory is used) and of Rauch [21] (which
is based on Galerkin approximations). It should be pointed out that all these
works treat semilinear elliptic equtions. The study of the corresponding dynamic
problem is lagging behind. Only recently we had the works of Carl [4],Miettinen
[18] and Kandilakis-Papageorgiou [14]. Carl considers a problem where αo = 0 and
the functions αk are independent of x and monotone. Kandilakis-Papageorgiou
have a more general differential operator (like the one considered here) but αo = 0
and f is independent of (t, z) ∈ T × Z. Both works use the method of upper and
lower solutions but do not establish the existence of extremal solutions. Miettinen
deals with semilinear problems and employs the Galerkin method. Finally we also
mention the paper of Carl [3], where f = 0 (no discontinuous term is present),
the differential operator is independent of x and is strictly monotone. In that
paper the author following some ideas of Dancer-Sweers proves the existence of
extremal solutions. So it seems that no previous work considered the problem
in the generality that we have in our formulation. We mention that problems
with discontinuities, such as the one considered here, arise in solid mechanics
in cases involving nonmonotone, possibly multivalued constitutive laws derived
by nonconvex superpotentials. For such applications we refer to the thesis of
Miettinen [17] and the book of Panagiotopoulos [20].
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2. Preliminaries

In this section we fix our notation and the hypotheses on the data of problem
(2) and we also recall some basic definitions and facts from the theory of operators
of monotone type which we will need in the sequel.

Our hypotheses on the functions αk(t, z, x, y), k ∈ {1, 2, ...,N}, are the follow-
ing:
H(α) : αk : T × Z × R×RN → R, k ∈ {1, 2, ...,N}, are functions such that

(i) for every (x, y) ∈ R×RN , (t, z)→ αk(t, z, x, y) is measurable;
(ii) for every (t, z) ∈ T × Z, (x, y)→ αk(t, z, x, y) is continuous;
(iii) for almost all (t, z) ∈ T × Z, all x ∈ R and all y ∈ RN , we have

|αk(t, z, x, y)| ≤ β(t, z) + c(|x|p−1 + ||y||p−1)

with β ∈ Lq(T × Z), c > 0, 2 ≤ p <∞ and 1
p

+ 1
q

= 1;

(iv) for almost all (t, z) ∈ T × Z, all x ∈ R and all y, y
′ ∈ RN , y 6= y

′
we have

N∑
k=1

(αk(t, z, x, y)− αk(t, z, x, y
′
))(yk − y

′

k) > 0 ;

(v) for almost all (t, z) ∈ T × Z, all x ∈ R and all y ∈ RN , we have

N∑
k=1

αk(t, z, x, y)yk ≥ c1||y||p − β1(t, z)

with β1 ∈ L1(T × Z), c1 > 0.

Recall that an “evolution triple” consists of a triple of spaces X ⊆ H ⊆ X∗

such that:

(a) X is a separable reflexive Banach space;
(b) H is a separable Hilbert space which is identified with its dual (pivot

space);
(c) the embedding of X into H is continuous and dense (see Zeidler [22], p.

146).

Let W1,p(Z) be the usual Sobolev space and W1,p(Z)∗ its dual. The spaces
W 1,p(Z) ⊆ L2(Z) ⊆W1,p(Z)∗ form an evolution triple and in addition all embed-
dings are compact. Also by W 1,p

o (Z) we denote the subspace of W1,p(Z) whose
elements have zero trace. As usual, by W−1,q(Z) we denote the dual of W1,p

o (Z).
Then W1,p

o (Z) ⊆ L2(Z) ⊆ W−1,q(Z) is another evolution triple, with all embed-
dings again being compact.

We introduce two spaces which play a central role in this paper:

Ŵpq(T ) = {x ∈ Lp(T,W 1,p(Z)) :
∂x

∂t
∈ Lq(T,W 1,p(Z)∗)}

and

Wpq(T ) = {x ∈ Lp(T,W 1,p
o (Z)) :

∂x

∂t
∈ Lq(T,W−1,q(Z))} .
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In these definitions the time-derivative of x is understood in the sense of vector-
valued distributions. Both spaces equipped with the obvious norm ||x||pq =
||x||p + || ∂x∂t ||q become separable reflexive Banach spaces. Moreover, both spaces
are embedded continuously in C(T, L2(Z)) and compactly in Lp(T × Z) (see for
example Lions [16], theorem 5.1, p. 58 or Zeidler [23], proposition 23.23, p. 422
and p. 450).

Hypotheses H(α) allow us to define the semilinear form α : Lp(T,W 1,p(Z)) ×
Lp(T,W 1,p(Z)) → R by

α(x, y) =
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x,Dx)Dky(t, z)dzdt .

In what follows by ((·, ·)) we denote the duality brackets for the pair

(Lp(T,W 1,p
o (Z)), Lp(T,W−1,q(Z)))

and also of the pair (
Lp(T,W 1,p(Z)), Lq(T,W 1,p(Z)∗)

)
.

Recall that if X is a reflexive Banach space (or more generally if X∗ has the
Radon-Nikodym Property (RNP)) and 1 ≤ p < ∞, then Lp(T,X)∗ = Lq(T,X∗)
(see Hu-Papageorgiou [12], theorem A.3.98, p. 918).

At this point we can introduce the notions of upper and lower solutions which
will be basic in our subsequent considerations.

Definition. A function φ ∈ Ŵpq(T ) is said to be an “ upper solution” of problem
(2) if

((
∂φ

∂t
, u)) + α(φ, u) +

∫ b

o

∫
Z

αo(t, z, φ,Dφ)udzdt≥
∫ b

o

∫
Z

f2(t, z, φ)udzdt

for all u ∈ Lp(T,W 1,p
o (Z))∩Lp(T ×Z)+ and φ(0, z) ≥ xo(z) a.e. on Z, φ |T×Γ≥ 0.

Similarly ψ ∈ Ŵpq(T ) is said to be a “lower solution” of problem (2) if the
inequalities are reversed and f2 is replaced by f1.

We assume that there exist upper and lower solutions.
Ho: There exist an upper solution φ ∈ Ŵpq(T ) and a lower solution ψ ∈ Ŵpq(T )

such that ψ(t, z) ≤ φ(t, z) a.e. on T × Z.
Finally our hypotheses on αo and the discontinuity term f are the following:
H(αo): αo : T × Z × R×RN → R is a function such that

(i) for every (x, y) ∈ R×RN , (t, z)→ αo(t, z, x, y) is measurable;
(ii) for all (t, z) ∈ T × Z, (x, y)→ αo(t, z, x, y) is continuous;
(iii) for almost all (t, z) ∈ T × Z, all x ∈ [ψ(t, z), φ(t, z)] and all y ∈ RN , we

have
|αo(t, z, x, y)| ≤ β2(t, z) + c2||y||p−1

with β2 ∈ Lq(T × Z), c2 > 0.

H(f ): f : T × Z × R→ R is measurable function such that
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(i) f1, f2 are superpositionally measurable (i.e. if x : T × Z → R is measur-
able, then so are the functions (t, z)→ fk(t, z, x(t, z)), k = 1, 2;

(ii) for almost all (t, z) ∈ T ×Z and all x ∈ [ψ(t, z), φ(t, z)], we have |f(t, z, x)|
≤ β3(t, z) with β3 ∈ Lq(T × Z).

Remark. If f is independent of (t, z) ∈ T × Z, then hypotheses H(f)(i) is
automatically satisfied because f1, f2 are lower and upper semicontinuous functions
of x respectively. Similarly if f(t, z, ·) is monotone. Indeed if for example f(t, z, ·)
is nondecreasing, then f2(t, z, x) = f(t, z, x+) and f1(t, z, x) = f(t, z, x−). Then

note that f(t, z, x+) = lim
n→∞

f(t, z, x+
1
n

) and f(t, z, x−) = lim
n→∞

f(t, z, x− 1
n

) and

so f1, f2 are measurable functions, hence superpositionally measurable.
Let (X,H,X∗) be an evolution triple. By | · | (resp. || · ||, || · ||∗) we denote the

norm of H (resp. of X,X∗). Also by (·, ·) we denote the inner product of H and
by 〈·, ·〉 the duality brackets of (X,X∗). The two are compatible in the sense that
〈·, ·〉 |H×X= (·, ·).

Definition. An operator A : X → X∗ is said to be of type (S)+, if for every
sequence {xn} ⊆ X such that xn

w→ x in X as n→∞ and lim sup < A(xn), xn −
x >≤ 0, we have xn → x in X as n→∞.

Remark. A demicontinuous operator of type (S)+ is also generalized pseu-
domonotone (see Hu-Papageorgiou [13], proposition III.6.25, p. 371 or Zeidler
[23], proposition 27.6, p. 586).

A related concept, useful in the context of dynamic (parabolic) problems is the
following:

Definition. Let Y be a reflexive Banach space, L : D ⊆ Y → Y ∗ a linear, densely
defined maximal monotone operator and G : Y → Y ∗ a nonlinear operator. We
say that G(·) is of “type L − (S)+”, if for all sequences {yn}n≥1 ⊆ D such that
yn

w→ y in Y , L(yn) w→ L(y) in Y ∗ and lim sup(G(yn), yn − y)Y ∗,Y ≤ 0, we have
yn → y in Y

This notion can be generalized as follows:

Definition. Let Y and L as in the previous definition. A set-valued map
F : Y → 2Y

∗ \ {∅} with weakly compact and convex values, is said to be “L-
pseudomonotone”, if for all sequences {yn}n≥1 ⊆ D such that yn

w→ y in Y ,
L(yn)

w→ L(y) in Y ∗ and for y∗n ∈ F (yn), n ≥ 1, satisfying y∗n
w→ y∗ in Y ∗ and

lim sup(y∗n, yn − y) ≤ 0, we have y∗ ∈ F (y) and (y∗n, yn)→ (y∗, y) as n→∞.
Our proof uses truncation and penalization techniques and so we introduce the

truncation map τ : T × Z ×R→ R and the penalty function u : T × Z ×R→ R
defined by

τ (t, z, x) =

 φ(t, z) if φ(t, z) ≤ x
x if ψ(t, z) ≤ x ≤ φ(t, z)

ψ(t, z) if x ≤ ψ(t, z)
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and

u(t, z, x) =

 (x − φ(t, z))p−1 if φ(t, z) ≤ x
0 if ψ(t, z) ≤ x ≤ φ(t, z)

−(ψ(t, z) − x)p−1 if x ≤ ψ(t, z)

Let τ̂ : Lp(T,W 1,p(Z)) → Lp(T,W 1,p(Z)) be the Nemitsky operator corre-
sponding to τ (t, z, x);

Proposition 1. τ̂ : Lp(T,W 1,p(Z)) → Lp(T,W 1,p(Z)) is continuous

Proposition 2. u : T×Z×R → R is a Caratheodory function (i.e. measurable in
(t, z) and continuous in x),for almost all (t, z) ∈ T ×Z and all x ∈ R, |u(t, z, x)| ≤
β4(t, z) + c4|x|p−1 with β4 ∈ Lq(T × Z), c4 > 0 and

∫ b
o

∫
Z u(t, z, x(t, z))dzdt ≥

c5||x||pLp(T×Z) − c6 with c5, c6 > 0.

3. Existence of solutions

First we define what we mean by a solution of problem (2):

Definition. A function x ∈ Wpq(T ) is said to be a “solution” (weak solution) of
(2), if there exists g ∈ Lq(T×Z) such that f1(t, z, x(t, z)) ≤ g(t, z) ≤ f2(t, z, x(t, z))
a.e. on T × Z and

((
∂x

∂t
, u)) + α(x, u) +

∫ b

o

∫
Z

αo(t, z, x,Dx)udzdt =
∫ b

o

∫
Z

gudzdt .

for all u ∈ Lp(T,W 1,p
o (Z)) and x(0, z) = xo(z) a.e. on Z, x |T×Γ= 0.

In this section we show that problem (2) has at least one solution in the order
interval K = [ψ, φ] = {x ∈ Lp(T × Z) : ψ(t, z) ≤ x(t, z) ≤ φ(t, z) a.e. on T × Z }
and that the set of all such solutions, denoted henceforth by S(xo) ⊆ Wpq(T ), is
compact.

Let f (t, z, x) = f(t, z, τ (t, z, x)). For this function we define f1(t, z, x) and
f2(t, z, x) as we did for f ; i.e. f1(t, z, x) = lim infx′→x f (t, z, x

′
) and f2(t, z, x) =

lim supx′→x f (t, z, x
′
).

Using f1 and f2, we introduce the following auxiliary problem:


∂x
∂t −

N∑
k=1

Dkαk(t, z, τ̂(x), Dx) + αo(t, z, τ̂(x), Dτ̂ (x)) + ξu(t, z, x)

∈ [f1(t, z, x), f2(t, z, x)] on T × Z .
x(0, z) = xo(z) a.e. on Z, x |T×Γ= 0, ξ > 0 .

(3)

Solutions for (3) are defined as for problem (2). We denote the solution set of
(3) by Sα(xo) ⊆ Wpq(T ). The next proposition establishes the nonemptiness of
Sα(xo).

Proposition 3. If hypotheses H(α), H(αo), Ho, H(f) hold, xo ∈ L2(Z) and
ξ ≥ ξo > 0, then Sα(xo) is nonempty subset of Wpq(T ).
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Proof. Let A1 : T ×W 1,p
o (Z)→W−1,q(Z) be defined by

〈A1(t, x), y〉 =
∫
Z

N∑
k=1

αk(t, z, τ̂(x), Dx)Dkydz for all y ∈ W 1,p
o (Z)

Using hypotheses H(α), we can easily verify that for every x ∈ W1,p
o (Z), t →

A1(t, x) is measurable, for every t ∈ T x→ A1(t, x) is demicontinuous, ||A1(t, x)||∗
≤ β̂(t)+ĉ||x||p−1 a.e. on T with β̂ ∈ Lq(T ), ĉ > 0 and 〈A1(t, x), x〉 ≥ c1||x||p−β̂1(t)
a.e. on T with β̂1 ∈ L1(T ), c1 > 0 (here by || · ||, || · ||∗ we denote the norms
of W 1,p

o (Z),W−1,q(Z) respectively and by 〈·, ·〉 the duality brackets for the pair
(W 1,p

o (Z),W−1,q(Z)). Moreover, from proposition 3.3 of Kandilakis-Papageorgiou
[14] we have that for all t ∈ T,A1(t, ·) is of type (S)+.

Also let h : T ×W1,p
o (Z)→ Lq(T × Z) be defined by

h(t, x)(z) = αo(t, z, τ̂(x), Dτ̂ (x)) .

By virtue of hypotheses H(αo) and proposition 1, for every x ∈ W 1,p
o (Z), t →

h(t, x) is measurable and for every t ∈ T, x→ h(t, x) is continuous. Also we have:

|〈h(t, x), x〉| = |
∫
Z

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz(4)

≤ |
∫

{x<ψ}∪{φ<x}

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz|

+ |
∫

{ψ≤x≤φ}

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz| .

Because of hypothesis H(αo)(iii) we can find β5 ∈ Lq(T × Z) such that∣∣ ∫
{φ<x}

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz
∣∣ =

∣∣ ∫
{φ<x}

αo(t, z, φ,Dφ)x(z)dz
∣∣(5)

≤ ||β5(t, ·)||q||x||p

and ∣∣ ∫
{x<ψ}

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz
∣∣ =

∣∣ ∫
{x<ψ}

αo(t, z, ψ,Dψ)x(z)dz
∣∣(6)

≤ ||β5(t, ·)||q||x||p .

Recall that Dτ̂ (x)(t, z) =

 Dφ(t, z) if φ(t, z) ≤ x(t, z)
Dx(t, z) if ψ(t, z) ≤ x(t, z) ≤ φ(t, z)
Dψ(t, z) if x(t, z) ≤ ψ(t, z)

;

(see for example Evans-Gariepy [10], theorem 4, pp. 129-130).
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In addition if σ(t) = max[||ψ(t, ·)||p, ||φ(t, ·)||p] ∈ Lp(T ), we have∣∣ ∫
{ψ≤x≤φ}

αo(t, z, τ̂(x), Dτ̂ (x))x(z)dz
∣∣ ≤ (||β2(t, ·)||q + c2σ(t)p−1)σ(t)(7)

= η1(t) a.e. on T .

with η1(t) ∈ L1(T ).
Use Young’s inequality on the right hand side of (5) and (6) and then together

with (7) use them in (4), to obtain

| < h(t, x), x > | ≤ η2ε(t) +
ε

p
||x||p−1 a.e. on T

with η2ε ∈ Lp(T ), α2 ∈ L2(T ). In addition, using once more hypothesis H(αo)(iii)
we have

||h(t, x)||q ≤ ||β2(t, ·)||q + c2||x||p−1 a.e. on T .

Let A : T ×W1,p
o (Z) → W−1,q(Z) be defined by A(t, x) = A1(t, x) + h(t, x).

Evidently, t→ A(t, x) is measurable, x→ A(t, x) is demicontinuous, ||A(t, x)||∗ ≤
β̂2(t)+ĉ2||x||p−1 a.e. on T and choosing ε small enough 〈A(t, x), x〉 ≥ ĉo||x||p−η̂(t)
a.e. on T where β̂2 ∈ Lq(T ), ĉ2, ĉo > 0 and η̂ ∈ L1(T )+. In addition for all t ∈ T
A(t, ·) is of type (S)+. Indeed if xn

w→ x in W 1,p
o (Z) and lim sup〈A(t, xn), xn−x〉 ≤

0, then xn → x in Lp(Z) and so 〈h(t, xn), xn − x〉 =
∫ b
o
αo(t, z, τ̂(xn), Dτ̂ (xn))

(xn − x)(z)dz → 0 as n → ∞. Hence lim sup〈A1(t, xn), xn − x〉 ≤ 0. But as we
already mentioned A1(t, ·) is of type (S)+. Hence by definition xn→ x in W 1,p

o (Z)
which proves that A(t, ·) is of type (S)+ as claimed.

Let Â : Lp(T,W 1,p
o (Z)) → Lq(T,W−1,q(Z)) be the Nemitsky operator corre-

sponding to A(t, x); i.e. Â(x)(·) = A(·, x(·)). Also let û : T × Lp(Z) → Lq(Z) be
the map defined by û(t, x)(·) = u(t, ·, x(·)). By virtue of proposition 2, û(t, x) is a
Caratheodory map (i.e. measurable in t ∈ T and continuous in x ∈ Lp(Z)) and for
almost all t ∈ T and all x ∈ Lp(Z), we have ||û(t, x)||p ≤ β̂3(t) + ĉ3||x||p−1, where
β̂3 ∈ Lq(T ), ĉ3 > 0. Finally let F1 : T ×Lp(Z)→ 2L

q(Z) \{∅} be the multifunction
with closed and convex values defined by

F1(t, x) = {g ∈ Lq(Z) : f1(t, z, x(z)) ≤ g(z) ≤ f2(t, z, x(z)) a.e. on Z} .

We rewrite problem (3) in the following equivalent evolution inclusion form:

{
ẋ(t) +A(t, x(t)) + ξû(t, x(t)) ∈ F1(t, x(t)) a.e. on T
x(0) = xo .

}
(8)

We solve (8). To this end, first assume xo ∈W 1,p
o (Z). Then we set

Ao(t, x) = A(t, x+ xo), uo(t, x) = û(t, x+ xo) and F 1(t, x) = F1(t, x+ xo)

It is easy to verify that all properties of A(t, x), û(t, x) and F1(t, x) are passed
to Ao, uo and F 1 respectively (with different constants). We consider the following
Cauchy problem:
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{
ẏ(t) + Ao(t, y(t)) + ξuo(t, y(t)) ∈ F1(t, y(t)) a.e. on T
y(0) = 0 .

}
(9)

Note that y ∈ Wpq(T ) solves (9) if and only if x = y + xo ∈ Wpq solves
(8). So to obtain a solution for (8) it suffices to solve (9) which has zero initial
condition. Let L : D ⊆ Lp(T,W 1,p

o (Z)) → Lq(T,W−1,q(Z)) be defined by Ly = ẏ
for all y ∈ D = {y ∈ Lp(T,W 1,p

o (Z)) : ẏ ∈ Lq(T,W−1,q(Z)), y(0) = 0}. Here as
before the time derivative of y is defined in the sense of vectorial distributions.
It is well-known (see for example Hu-Papageorgiou [11], proposition 9.3, p. 419
or Zeidler [23], proposition 32.10, p. 855), that L is linear, densely defined and
maximal monotone. Let Uo : Lp(T × Z)→ Lq(T × Z) be defined by Uo(x)(t, z) =
uo(t, z, x(t, z)). Proposition 2 implies that Uo is continuous and bounded. Also
let Go : Lp(T × Z) → 2L

q(T×Z) \ {∅} be defined by Go(x) = {g ∈ Lq(T × Z) :
f1(t, z, x(t, z)) ≤ g(t, z) ≤ f2(t, z, x(t, z)) a.e. on T × Z}. Then Go(·) has closed
and convex values. Problem (9) is equivalent to the following operator inclusion:

Ly + Ao(y) + ξUo(y) ∈ Go(y)

Claim 1: The operator Âo + ξUo − Go is L-pseudomonone.
Let xn

w→ x in Wpq(T ) vn ∈ Ao(xn) + ξUo(xn) − gn, where gn ∈ Go(xn), n ≥
1 and assume that vn

w→ v in Lq(T,W−1,q(Z). Because Wpq(T ) is embedded
compactly in Lp(T ×Z), we have xn → x in Lp(T ×Z). Since Uo(·) is continuous
we have that Uo(xn)→ Uo(x) in Lq(T ×Z). So ((Uo(xn), xn−x)) = (Uo(xn), xn−
x)pq → 0 as n → ∞ (here by (·, ·)pq we denote the duality brackets for the pair
(Lp(T × Z), Lq(T × Z))). Also since gn ∈ Go(xn) we have |gn(t, z)| ≤ β4(t, z)
a.e. on T × Z, n ≥ 1 with β4 ∈ Lq(T × Z) (see hypothesis H(f)(iii)). So we
may assume that gn

w→ g in Lq(T × Z) as n → ∞. Using proposition 3.9, p.
694 of Hu-Papageorgiou [11] and the fact that f1(t, z, ·) is lower semicontinuous,
while f2(t, z, ·) is upper semicontinuous, we infer that f1(t, z, x(t, z)) ≤ g(t, z) ≤
f2(t, z, x(t, z)) a.e. on T × Z; i.e. g ∈ Go(x). In addition ((gn, xn − x)) =
(gn, xn − x)pq → 0 as n→∞. Thus finally we can say that

lim sup((Âo(xn), xn − x)) ≤ 0

From proposition 3.6 of Kandilakis-Papageorgiou [14] we know that Âo is of
type L − (S)+. So we have xn → x in Lp(T,W 1,p

o (Z)). Therefore it follows that
Âo(xn)

w→ Âo(x) in Lq(T,W−1,q(Z)) and so in the limit as n→∞, we have that
v = Âo(x) + ξUo(x) − g ∈ (Âo + ξUo − Go)(x) and ((vn, xn)) → ((v, x)). This
proves the claim.

Claim 2: For ξ ≥ ξo, (Âo + ξUo −Go)(·) is coercive.
We have

((Â1(x+ xo), x)) ≥ ĉ4||x||Lp(T,W1,p
o (Z)) − ĉ5(10)
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Also if ĥ : Lp(T,W 1,p
o (Z)) → Lq(T ×Z) is the Nemitsky operator corresponding

to h(t, x) (i.e. ĥ(x)(t) = h(t, x(t))) and we use Young’s inequality, we have

((ĥ(x+ xo), x)) = (ĥ(x+ xo, x)pq ≤ ||ĥ(x+ xo)||Lp(T×Z)||x||Lp(T×Z)

≤ εq

q
||ĥ(x+ xo)||qLq(T×Z) +

1
εpp
||x||pLp(T×Z)(11)

From previous considerations we know that

||ĥ(x+ xo)||qLq(T×Z) ≤
εq

q
(ĉ7 + ĉ8||x||pLp(T,W1,p

o (Z))
), ĉ7, ĉ8 > 0 .

Using this in (11), we have

((ĥ(x+ xo), x)) ≤ εq

q
(ĉ7 + ĉ8||x||pLp(T,W1,p

o (Z))
) +

1
εpp
||x||p

Lp(T×Z) .(12)

Also from proposition 2 we know that

((Uo(x+ xo), x)) = (Uo(x+ xo), x)pq(13)

≥ ĉ9||x||pLp(T×Z) − ĉ10, ĉ9, ĉ10 > 0 .

Using (10), (11), (12) and (13), for any g ∈ Go(x) we have

((Âo(x) + ξUo(x)− g, x)) ≥ (ĉ1 −
εq

q
ĉ8)||x||p

Lp(T,W1,p
o (Z))

+ (ξĉ5 −
1
εpp

)||x||pLp(T×Z) − ĉ11, ĉ11 > 0 .(14)

Choose ε > 0 so that ĉ1 > εq

q ĉ8 and then based on this choise of ε > 0, we

choose ξ > 0 large enough so that ξc9 > 1
εpp

. Then from (14) it follows that

(Âo + ξUo −Go)(·) is coercive as claimed.
Using claims 1 and 2, we can apply proposition 3.4 of Kandilakis - Papageorgiou

[14] and obtain y ∈Wpq(T ) a solution of Ly+Âo(y)+ξUo(y) ∈ Go(y). This solves
(4), hence y + xo = x ∈ Wpq(T ) solves problem (3). Thus we have established
the nonemptiness of the solution set of (3) when ξ ≥ ξo > 0 and with regular
initial datum xo ∈ W 1,p

o (Z). Now we remove this last restriction and assume that
xo ∈ L2(Z). Let xon ∈ W 1,p

o (Z), n ≥ 1, be such that xon → xo in L2(Z) as
n→∞. Let xn ∈ Sα(xon), n ≥ 1. By the same a priori estimation as in Aizicovici
- Papageorgiou [1], we can show that {xn}n≥1 ⊆ Wpq(T ) is bounded. So we may
assume that xn

w→ x in Wpq(T ), xn→ x in Lp(T ×Z) and xn
w→ x in C(T, L2(Z))

(recall that Wpq(T ) is embedded compactly in Lp(T × Z) and continuously in
C(T, L2(Z)). Therefore Lxn = ẋn

w→ ẋ = Lx in Lq(T,W−1,q(Z)), U (xn) → U (x)
in Lq(T ×Z) and if gn ∈ G(xn), n ≥ 1, are such that Lxn+ Â(xn) + ξU (xn) = gn,
then we may assume that gn

w→ g in Lq(T × Z). We have

((ẋn, xn − x)) + ((Â(xn), xn − x)) + ξ((U (xn), xn − x)) = ((gn, xn − x))
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Note that ((U (xn), xn−x)) = (U (xn), xn−x)pq → 0 and ((gn, xn−x)) = (gn, xn−
x)pq → 0 as n → ∞. Also from the integration by parts formula for functions in
Wpq(T ) (see Zeidler [23], proposition 23.23, p. 422-423) we have

((ẋn, xn − x)) = ||xn(b, ·)− x(b, ·)||22− ||xon − xo||22 + ((ẋ, xn − x))

≥ −||xon − xo||22 + ((ẋ, xn − x))

We know that ||xon − xo||22 → 0 as n → ∞, while because xn
w→ x in Wpq(T )

we infer that ((ẋ, xn − x))→ 0. Therefore 0 ≤ lim inf((ẋn, xn − x)) and from this
it follows that lim sup((Â(xn), xn − x)) ≤ 0. Since Â is of type L − (S)+ we have
that xn → x in Lp(T,W 1,p

o (Z)) and so as before we can verify that g ∈ G(x) and
that Lx+ Â(x) + ξU (x) = g, i.e. x ∈ Sα(xo). �

Using proposition 3 we can show the nonemptiness of S(xo) ⊆ Wpq(T ). We
recall that by S(xo) we denote the set of solutions of (2) in the order interval
K = [ψ, φ]. Moreover, we show that S(xo) is compact in Wpq(T ). This appears
to be the first such result in the literature.

Theorem 1. If hypotheses H(α), H(αo), Ho, H(f) hold, xo ∈ L2(Z), then
S(xo) ⊆ Wpq(T ) is nonempty and compact.

Proof. Let x ∈ Sα(xo) (see proposition 3). For all w ∈Wpq(T ) we have

((ẋ, w)) + ((Â1(x), w)) + ((ĥ+ ξU (x), w)) = ((g, w))(15)

for some g ∈ G(x)

Also since by hypothesis ψ ∈ Ŵpq(T ) is a lower solution, for all w ∈ Wpq(T ) ∩
Lp(T × Z)+, we have

((ψ̇, w)) + ((Â1(ψ), w)) + ((ĥ(ψ), w)) ≤ ((f̂1(ψ), w))(16)

where f̂1(ψ)(t, z) = f(t, z, ψ(t, z)). Let w = (ψ − x)+ ∈ Wpq(T ) ∩ Lp(T × Z)+.
Subtracting (16) from (15) we obtain

((ẋ − ψ̇, (ψ − x)+)) + ((Â1(x)− Â1(ψ), (ψ − x)+)) + ((ĥ(x)− ĥ(ψ), (ψ − x)+))

+ ξ((U (x), (ψ − x)+)) ≥ ((g − f̂1(ψ), (ψ − x)+)) .(17)

From the integration by parts formula for functions in Wpq(T ), we have

((ẋ− ψ̇, (ψ − x)+)) = −1
2
||(ψ − x)+(b, ·)||22 +

1
2
||(ψ − x)+(0, ·)||22 .

But from the definition of lower solution, we have (ψ − x)+(0, ·) = 0. So

((ẋ− ψ̇, (ψ − x)+)) ≤ 0 .(18)
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Also we have

((Â1(x)− Â1(ψ), (ψ − x)+))(19)

=
∫ b

o

∫
Z

N∑
k=1

(αk(t, z, τ̂(x), Dx)− αk(t, z, ψ,Dψ))Dk(ψ − x)+dzdt

=
∫ ∫
{ψ>x}

N∑
k=1

(αk(t, z, ψ,Dx)− αk(t, z, ψ,Dψ))Dk(ψ − x)dzdt ≤ 0

(see hypothesis H(α)(iv)).

Similarly we have

((ĥ(x)− ĥ(ψ), (ψ − x)+))(20)

=
∫ b

o

∫
Z

(αo(t, z, τ̂(x), Dτ̂ (x))− αo(t, z, ψ,Dψ))(ψ − x)+dzdt

=
∫ ∫

{ψ>x}
(αo(t, z, ψ,Dψ) − αo(t, z, ψ,Dψ))(ψ − x)dzdt = 0 .

Finally since f1(t, z, x(t, z)) = f(t, z, ψ(t, z)) ≥ f1(t, z, ψ(t, z)) a.e. on T × Z.
Hence

((g − f̂1(ψ), (ψ − x)+)) ≥ 0(21)

Using (18) → (21) in (17), we obtain

ξ((U (x), (ψ − x)+)) ≥ 0

⇒
∫ b

o

∫
Z

u(t, z, x(t, z))(ψ − x)+(t, z)dzdt ≥ 0

⇒
∫ ∫
{ψ>x}

−(ψ − x)p−1(ψ − x)dzdt ≥ 0

⇒ ||(ψ − x)+||p = 0 i.e. ψ ≤ x

Similarly we can show that x ≤ φ, i.e. x ∈ K = [ψ, φ]. Hence τ̂ (x) = x, U (x) =
0 and so g(t, z) ∈ f̂ (t, z, x(t, z)) a.e. Therefore x ∈ S(xo).

Now we prove the compactness property of the solution set S(xo). For this
purpose let V = {g ∈ Lq(T × Z) : |g(t, z)| ≤ β3(t, z) a.e. on T × Z}. This set
furnished with the relative weak-Lp(T × Z) topology is compact and metrizable.
Let Γ : V → 2C(T,L2(Z)) be the map which to each g ∈ V assigns the set of
solutions of the following Cauchy problem:{

ẋ(t) +A(t, x(t)) = g(t) a.e. on T
x(0) = xo .

}
(22)

We know that Γ(g) 6= ∅.
Claim 3: Γ(V ) is compact in Wpq(T ).
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Let {xn}n≥1 ⊆ Γ(V ). Then we can find {gn}n≥1 ⊆ V such that xn ∈ Γ(gn),
n ≥ 1. From a priori estimation (see Aizicovici-Papageorgiou [1]) we know that
{xn}n≥1 ⊆ Wpq(T ) is bounded. So we may assume that xn

w→ in Wpq(T ), xn → x

in Lp(T × Z), xn(t, ·) → x(t, ·) in Lp(Z) for all t ∈ T \ N, |N | = 0 and gn
w→ g

in Lq(T × Z). The sequence t →< ẋn(t, ·), xn(t, ·)− x(t, ·) >,n ≥ 1, is uniformly
integrable. So given ε > 0 we can find t ∈ T \N such that∫ b

t

| < ẋn(s, ·), xn(s, ·)− x(s, ·) > |ds < ε(23)

Denote by ((·, ·))t the duality brackets for the pair

(L2([0, t],W 1,p
o (Z)), Lq([0, t],W−1,q(Z))) .

Using the integration by parts formula for functions in Wpq(T ), we have

((ẋn, xn − x))t =
1
2
||xn(t, ·)− x(t, ·)||22 + ((ẋ, xn − x))t

Since t ∈ T \ N , we have ||xn(t, ·) − x(t, ·)||22 → 0. Also ((ẋ, xn − x))t → 0.
Hence ((ẋn, xn − x))t → 0 as n→∞.

Note that

((ẋn, xn − x)) = ((ẋn, xn − x))t +
∫ b

t

< ẋn(s, ·), xn(s, ·)− x(s, ·) > ds

⇒ ((ẋn, xn − x)) ≥ ((ẋn, xn − x)) − ε (see (23))

⇒ lim inf((ẋn, xn − x)) ≥ −ε

Let ε ↓ 0, to obtain that

lim inf((ẋn, xn − x)) ≥ 0(24)

From (23) and (24) it follows that ((ẋn, xn − x)) → 0 as n → ∞. For every
n ≥ 1 we have

((ẋ, xn − x)) + ((Â(xn), xn − x)) = (gn, xn − x)pq

⇒ lim sup((Â(xn), xn − x)) ≤ 0

Since Â is of type L− (S)+, we deduce that xn → x in Lp(T,W 1,p
o (Z)). Note

that Wpq(T ) is embedded densely in Lp(T,X). So for every n ≥ 1 we can find
un ∈Wpq(T ) with ||un||p ≤ 1 such that

||ẋn − ẋ||q −
1
n
≤ ((ẋn − ẋ, un)).

As before, since the sequence t →< ẋn(t, ·), un(t, ·) >, n ≥ 1 is uniformly inte-
grable, given ε > 0 we can find t ∈ T \N , |N | = 0 such that∫ b

t

| < ẋn(t, ·)− ẋ(t, ·), un(t, ·) > |dt ≤ ε.
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So we have

((ẋn − ẋ, un)) = ((ẋn − ẋ, un))t +
∫ b

t

< ẋn(t, ·)− ẋ(t, ·), un(t, ·) > dt

⇒ ((ẋn − ẋ, un)) ≥ ((ẋn − ẋ, un))t − ε
⇒ lim inf((ẋn − ẋ, un)) ≥ 0 (since ε > 0 is arbitrary).

Similarly we have
lim sup((ẋn − ẋ, un)) ≤ 0 .

Thus we deduce that ((ẋn − ẋ, un)) → 0 and so ẋn → ẋ in Lq(T,W−1,q(Z)) and
ẋ + Â(x) + ĥ(x) = g, g ∈ V . This proves that xn → x in Wpq(T ) with x ∈ R(V )
and so R(V ) is compact in Wpq(T ). Since S(xo) ⊆ Wpq(T ), we conclude that
S(xo) is compact in Wpq(T ). �

4. Extremal solutions

In this section by strengthening our hypotheses on the function αk, assuming
that f is Caratheodory and using ideas from Chipot-Rodrigues [6], we show that
the problem has extremal solutions in the order interval K = [ψ, φ]. A similar
result was proved by Carl [3], but in his problem αk is independent of x and his
approach is different. Since we no longer allow f to be discontinuous, we can
absorb f in the αo function and so our problem becomes:

∂x
∂t −

N∑
k=1

Dkαk(t, , z, x,Dx) + αo(t, z, x,Dx) = 0 on T × Z .

x(0, z) = xo(z) a.e. on Z, x |T×Γ= 0 .

(25)

Our hypotheses on the functions αk are the following:
H(α)1: αk : T ×Z ×R×RN → R, k ∈ {1, 2, ...,N}, are functions which satisfy

H(α)(i)→ (iii) and
(iv) for all (t, z) ∈ T × Z and all x ∈ R and all y, y

′ ∈ RN we have

N∑
k=1

(αk(t, z, x, y)− αk(t, z, x, y
′
))(yk − y

′

k) ≥ co||y − y
′
||p

where co > 0;

(v) for almost all (t, z) ∈ T × Z, all x ∈ R and all y ∈ RN we have

N∑
k=1

αk(t, z, x, y)yk ≥ c1||y||p − β1(t, z)

where β1 ∈ L1(T × Z), c1 > 0;

(vi) for almost all (t, z) ∈ T × Z, all x, x
′ ∈ R and all y ∈ RN , we have

|αk(t, z, x, y)− αk(t, z, x
′
, y)| ≤ [η(t, z) + |x

′
|p−1 + |x|p−1 + ||y||p−1]ω(|x− x

′
|)
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where η ∈ Lq(T × Z) and ω : R+ → R+ is the modulus of continuity satisfying∫∞
0+

dr
ωq(r) =∞.

Remark. Hypothesis H(vi) was introduced by Chipot-Rodrigues [6]. In that
paper the authors use it to prove new comparison and uniqueness results for bound-
ary value problems with and without obstacles. Note that hypothesis H(α)1(vi)
is satisfied for example when ω(r) = ĉr

1
q with ĉ > 0 (i.e. αk(t, z, ·, y) is Holder

continuous).
The next proposition is crucial in establishing the existence of extremal solution

in the order interval K = [ψ, ψ]. Recall that a subset C of a vector lattice (Riesz
space) is “directed upward” (resp. “directed downward ”), if for each pair a, b ∈ C
there exists some c ∈ A satisfying max{a, b} ≤ c (resp. min{a, b} ≥ c ).

Proposition 4. If hypotheses H(α)1, H(αo), Ho hold and xo ∈ L2(Z), then
S(xo) directed upward and downward.

Proof. Let x1, x2 ∈ S(xo) and set y = x1 ∨ x2 = max{x1, x1} ∈ Lp(T,W 1,p
o (Z)).

We show that y is a lower solution.
By virtue of hypothesis H(α)1(vi), given ε > 0 we can find δ(ε) ∈ (0, ε) such

that
∫ ε
δ(ε)

dr
ωq(r) = 1. Then we introduce the function

ξε(r) =


0 if r < δ(ε)∫ r

δ(ε)
ds

ωq(s) if δ(ε) ≤ r ≤ ε

1 if ε < r

(see Chipot-Rodrigues [6]). Evidently the function ξε(·) is Lipschitz continuous,
nondecreasing and ξε → χ{r>0} as ε ↓ 0. Moreover, we have

ξ
′

ε(r) =

{ 1
ωq(r) for δ(ε) < r < ε

0 otherwise

Let θ ∈ C∞o (T × Z), θ ≥ 0 and set

θε1 = (1− ξε(x2 − x1))θ and θε2 = ξε(x2 − x1)θ, θε1, θ
ε
2 ≥ 0 .

Using the chain rule for Sobolev functions (see for example Kesavan [15], Ap-
pendix 4) we obtain

Dkθ
ε
1 = Dkθ − ξ

′

ε(x2 − x1)Dk(x2 − x1)θ − ξε(x2 − x1)Dkθ

and Dkθ
ε
2 = ξ

′

ε(x2 − x1)Dk(x2 − x1)θ + ξε(x2 − x1)Dkθ, k ∈ {1, 2, ...,N}

Since by hypothesis x1, x2 ∈ S(xo), we have

((ẋ1, θ
ε
1)) + ((Â1(x1), θε1)) + (ĥ(x1), θε1)pq = 0(26)

and ((ẋ2, θ
ε
2)) + ((Â1(x2), θε2)) + (ĥ(x2), θε2)pq = 0(27)

We have

((ẋ1, θ
ε
1))→ ((ẋ1, χ{x1≥x2}θ)) and ((ẋ2, θ

ε
2))→ ((ẋ2, χ{x2>x1}θ)) as ε ↓ 0 .
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Note that ((ẋ1, θ
ε
1)) + ((ẋ2, θ

ε
2))→ ((ẏ, θ)) as ε ↓ 0.

Also we have

((Â1(x1), θε1)) + ((Â1(x2), θε2))(28)

=
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x1, Dx1)

(Dkθ − ξ
′

ε(x2 − x1)Dk(x2 − x1)θ − ξε(x2 − x1)Dkθ)dzdt

+
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x2, Dx2)

(ξ
′

ε(x2 − x1)Dk(x2 − x1)θ + ξε(x2 − x1)Dkθ))dzdt

We examine the terms containing the expression ξ
′

ε(x2 − x1)Dk(x2 − x1)θ. We
have

∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2)− αk(t, z, x1, Dx1))(29)

ξ
′

ε(x2 − x1)Dk(x2 − x1)θdzdt

=
∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2)− αk(t, z, x2, Dx1))

ξ
′

ε(x2 − x1)Dk(x2 − x1)θdzdt

+
∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx1)− αk(t, z, x1, Dx1))

ξ
′

ε(x2 − x1)Dk(x2 − x1)θdzdt .

Because of hypothesis H(α)1(iv) and since 0 ≤ ξ′ε ≤ 1, θ ≥ 0, we have

∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2) − αk(t, z, x2, Dx1))(30)

ξ
′

ε(x2 − x1)Dk(x2 − x1)θdzdt

≥ co

∫ b

o

∫
Z

||D(x2 − x1)||pξ
′

ε(x2 − x1)θdzdt .
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Also using hypothesis H(α)1(vi) and Young’s inequality we obtain

∣∣ ∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx1)− αk(t, z, x1, Dx1))(31)

ξ
′

ε(x2 − x1)Dk(x2 − x1)θdzdt
∣∣

≤
∫ b

o

∫
Z

N∑
k=1

(η(t, z) + |x1|p−1 + |x2|p−1 + ||Dx1||p−1)

ω(|x2 − x1|)|Dk(x2 − x1)|ξ′ε(x2 − x1)θdzdt

≤ co
2

∫ b

o

∫
Z

||D(x2 − x1)||pξ
′

ε(x2 − x1)θdzdt

+k
∫ ∫
{δ(ε)<x2−x1<ε}

(η(t, z) + |x1|p−1 + |x2|p−1 + ||Dx1||p−1)qθdzdt ,

(here k > 0 and we have used Young’s inequality ab ≤ εp

p
|a|p + 1

εqq
|b|q a, b ∈ R

with appropriately chosen ε > 0 so that we produce the coefficient co2 in the first
summand (actually any coefficient strictly less than co will do the job); also we
have used the fact that ξ

′

ε(r) = 1
ωq(r) for δ(ε) < r < ε).

We use (30) and (31) in (29). So we have

∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2) − αk(t, z, x1, Dx1))Dk(x2 − x1)(32)

ξ
′

ε(x2 − x1)θdzdt

≥ co
2

∫ b

o

∫
Z

||D(x2 − x1)||pξ′ε(x2 − x1)θdzdt

−k
∫ ∫
{δ(ε)<x2−x1<ε}

(η(t, z) + |x1|p−1 + |x2|p−1 + ||Dx1||p−1)qθdzdt

≥ −k
∫ ∫
{δ(ε)<x2−x1<ε}

(η(t, z) + |x1|p−1 + |x2|p−1 + ||Dx1||p−1)qθdzdt

Going back to (28) and using (32) we obtain

((Â1(x1), θε1)) + ((Â2(x2), θε2))

≥
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x1, Dx1)Dkθdzdt
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+
∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2)− αk(t, z, x1, Dx1))ξε(x2 − x1)Dkθdzdt

−k
∫ ∫
{δ(ε)<x2−x1<ε}

(η(t, z) + |x1|p−1 + |x2|p−1 + ||Dx1||p−1)θdzdt

Passing to the limit as ε ↓ 0 on the right hand side of this inequality and since
|{δ(ε) < x2 − x1 < ε}| → 0 as ε ↓ 0, we have∫ b

o

∫
Z

N∑
k=1

αk(t, z, x1, Dx1)Dkθdzdt

+
∫ b

o

∫
Z

N∑
k=1

(αk(t, z, x2, Dx2)− αk(t, z, x1, Dx1)χ{x2>x1}Dkθdzdt

=
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x1, Dx1)χ{x1≥x2}Dkθdzdt

+
∫ b

o

∫
Z

N∑
k=1

αk(t, z, x2, Dx2)χ{x2>x1}Dkθdzdt

=
∫ b

o

∫
Z

N∑
k=1

αk(t, z, y,Dy)Dkθdzdt = ((Â1(y), θ))

Moreover, we have

(ĥ(x1), θε1)pq + (ĥ(x2), θε2)pq → (ĥ(y), θ)pq as ε ↓ 0 .

Hence from (26) and (27) and the above limits, we infer that

((ẏ, θ)) + ((Â1(y), θ)) + (̂h(y), θ)pq ≤ 0

⇒ ((
∂y

∂t
, θ)) + α(y, θ) +

∫ b

o

∫
Z

αo(t, z, y,Dy)θdzdt ≤ 0

Since θ ∈ C∞o (T×Z)+ was arbitrary and C∞o (T×Z)+ is dense in Lp(T,W 1,p
o (Z))

∩Lp(T × Z)+, we deduce that y ∈Wpq(T ) is a lower solution.
Then by considering truncation and penalty functions for the pair {y, φ}, as

in theorem 4 (via an auxiliary problem like (3)), we obtain a solution x ∈ [y, φ].
So S(xo) is directed upward. Similarly by taking y = x1 ∧ x2 = min{x1, x2} and
by showing that in this case that y is an upper solution, we have that S(xo) is
directed downward. �

Using this proposition, we can now prove the existence of extremal solutions in
K = [ψ, φ], for problem (25).

Theorem 2. If hypotheses H(α)1, H(αo), Ho hold and xo ∈ L2(Z), then prob-
lem (25) has extremal solutions in K = [ψ, φ] .
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Proof. Let C be a chain of S(xo) and let x = supC. By virtue of corollary
7,p. 336 of Dunford-Schwartz [9] we can find {xn}n≥1 ⊆ C such that xn → x in
Lp(T × Z) as n → ∞. Also from theorem 4 we know that xn → x in Wpq(T ) as
n → ∞. Since ẋn + Â1(xn) + ĥ(xn) = 0, n ≥ 1, in the limit as n → ∞ we have
ẋ+Â1(x)+ĥ(x) = 0, x(0, z) = xo(z) a.e. on Z. Thus x ∈ S(xo). By Zorn’s lemma
S(xo) has a maximal element x∗ ∈ S(xo). Proposition 5 implies that x ≤ x∗ for all
x ∈ S(xo). Similarly exploiting the fact that S(xo) is directed downward we can
show that there exists x∗ ∈ S(xo) such that x∗ ≤ x for all x ∈ S(xo). Evidently
x∗, x

∗ ∈ S(xo) are the desired extremal solutions in K. �
Remark. To extend theorem 2 to problems with discontinuities, i.e. to problem
(2), we need to weaken the notions of upper and lower solutions for such prob-
lems. Indeed we need to replace in the definition of upper (resp. lower ) solution
f2(t, z, φ) (resp. f1(t, z, ψ))) by v2 (resp. v1) in Lq(T × Z) such that

f1(t, z, φ(t, z)) ≤ v2(t, z) ≤ f2(t, z, φ(t, z)) a.e. on T × Z

(resp f1(t, z, ψ(t, z)) ≤ v1(t, z) ≤ f2(t, z, ψ(t, z)) a.e. on T × Z) .

These new definitions lead to a new auxiliary problem with different multivalued
right hand side. Some ideas in this direction can be found in the work of Halidias-
Papageorgiou [13] on multivalued ordinary differential equations of second order.
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