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A NOTE TO FRIEDRICHS’ INEQUALITY

Dana Ř́ıhová-Škabrahová

Abstract. The main aim of this paper is to derive continuous and discrete
forms of inequalities which are similar to Friedrichs’ inequality and to show
that for h sufficiently small the constant C appearing in discrete inequali-
ties written for functions from finite element spaces X h is independent of h.
The discrete forms of Friedrichs’ inequality are restricted to two-dimensional
domains in this paper. These inequalities have applications in the theory of
two-dimensional electromagnetic field and in the analysis of the approximate
solution of Maxwell’s equations.

1. Introduction

Let Ω, ΩE , ΩP be two-dimensional bounded domains with continuous bound-
aries in the sense of Nečas (see [6, p. 14]) such that

Ω̄ = Ω̄E ∪ Ω̄P , ΩE ∩ΩP = ∅, mes2 ΩP > 0 .

Further, in Theorem 3.3 we shall assume that boundaries ∂Ω, ∂ΩE , ∂ΩP are
Lipschitz continuous and piecewise of class C2 and we restrict our considerations
to the case of a simply connected domain Ω divided into subdomains ΩE and ΩP
like this:

ΩP ΩE

Fig. 1
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ΩP
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Fig. 3

Let us note that some of such cases of Ω can occur in problems of two-dimensional
nonlinear quasistationary electromagnetic fields in electrical machines.

We shall use the Lebesgue space L2(Ω) and the Sobolev space H1(Ω) equipped
with their usual norms ‖.‖0, ‖.‖1, respectively (see [4]). The seminorm in the space
H1(Ω) will be denoted by |.|1. If G is a domain different from Ω then the norms
in L2(G) and H1(G) will be denoted by ‖.‖0,G, ‖.‖1,G, respectively. In order to
simplify the notation we shall write ‖.‖k,M and ‖.‖k,Mh instead of ‖.‖k,ΩM and
‖.‖k,ΩhM , respectively, (k = 0, 1) (M = E,P ), where ΩhM is an approximation of
ΩM .

2. Continuous form

2.1 Theorem. Let Ω be a bounded domain with a continuous boundary. Then we
have

‖v‖21 ≤ K(Ω)
(
‖v‖20,P + |v|21

)
∀v ∈ H1(Ω) .(1)

Proof. The method is analogical to the proof of Friedrichs’ inequality (see [6,
Theorems 1.1.8, 1.1.9]); however, on the contrary to [6] we go to details in the
proof.

A) First we shall prove that H1(Ω) is a Banach (and even a Hilbert) space for
the norm given by the right-hand side of (1). Let us denote B1 = H1(Ω); the
symbol 1‖.‖ will denote a norm in B1, i.e. 1‖v‖ = ‖v‖1.

Let B2 be a normed linear space which consists of the same elements as B1

provided with the norm

2‖v‖ =


∫

ΩP

v2 dx+
∫
Ω

N∑
i=1

(
∂v

∂xi

)2

dx


1
2

.

We show that the expression 2‖.‖ is a norm. Let 2‖v‖ = 0. Then Div = 0, |i| = 1
and

∫
ΩP

v2 dx = 0. As the derivatives are equal to zero we have v = const , thus
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the integral over ΩP (mes2 ΩP > 0) which is equal to zero gives v ≡ 0. The other
properties of the norm are evident.

From the definition of the norms 1‖.‖, 2‖.‖ it follows that

2‖v‖ ≤ 1‖v‖ .(2)

Let A = I be the identity operator which maps every element v ∈ B1 onto the
same element v ∈ B2. Then relation (2) implies

2‖Av‖ = 2‖v‖ ≤ 1‖v‖ .(3)

Thus the operator A is bounded. As it is linear (which is evident) it is contin-
uous. In the part B) of the proof we shall show that the space B2 is complete.
Therefore we can use Banach’s theorem on isomorphism (see [5, Theorem 2.20.1]).
According to it, the inverse operator A−1 = I fromB2 to B1 is linear and bounded:

1‖A−1v‖ = 1‖v‖ ≤ const
(

2‖v‖
)
,(4)

which is inequality (1).
B) Now we prove the completeness of the space B2. Let {vs} ⊂ B2 be a Cauchy

sequence in the norm 2‖.‖. Then we have∫
ΩP

|vm − vn|2 dx→ 0 for m,n→∞ ,(5)

∫
Ω

N∑
i=1

∣∣∣∣∂vm∂xi − ∂vn
∂xi

∣∣∣∣2 dx→ 0 for m,n→∞.(6)

According to [6, Theorem 1.1.6] and relation (6), we have (the symbol P0 denotes
the set of polynomials of degree zero)

‖ṽm − ṽn‖H1(Ω)/P0 → 0 for m,n→∞ ,

i.e. a sequence of classes {ṽs} ⊂ H1(Ω)/P0 corresponding to {vs} is a Cauchy
sequence. Let us note that the symbol H1(Ω)/P0 denotes a factorspace of classes
ṽ of functions v from H1(Ω) such that

v, u ∈ ṽ ⇔ v − u ∈ P0 ,

in which a norm is defined by

‖ṽ‖H1(Ω)/P0 = inf
v∈ṽ
‖v‖1 .

As the space H1(Ω)/P0 is complete the sequence {ṽs} converges, i.e. there exists
a class ṽ ∈ H1(Ω)/P0 such that

lim
s→∞

‖ṽs − ṽ‖H1(Ω)/P0 = 0 .(7)
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As ṽs − ṽ = (vs − v)∼ we have

‖ṽs − ṽ‖H1(Ω)/P0 = inf
u∈(vs−v)∼

‖u‖1 = inf
q∈P0

‖vs − w + q‖1 ,(8)

where w ∈ ṽ is an arbitrary element (independent on vs), but fixed. We show the
existence of a sequence {ps} ⊂ P0 depending on w and such that vs + ps → w in
the first norm 1‖.‖.

Let us choose ε > 0 arbitrarily. Relation (7) implies that there exists N (ε) such
that

‖ṽs − ṽ‖H1(Ω)/P0 <
ε

2
for s ≥ N (ε) .(9)

Further, according to the definition of infimum, there exists q(ε,w)
s ∈ P0 dependent

on vs, w, ε such that

‖vs − w + q(ε,w)
s ‖1 < inf

q∈P0

‖vs − w + q‖1 +
ε

2
.(10)

We restrict ourselves to s ≥ N (ε) in (10). Then using (8) and (9) we can rewrite
this relation in the form

‖vs − w + q(ε,w)
s ‖1 < ε for s ≥ N (ε) .(11)

Let us set εj = 1
j (j = 1, 2, . . .). The preceding considerations imply the existence

of numbers N (ε1) ≤ N (ε2) ≤ . . . ≤ N (εn) ≤ . . . and q
(ε1,w)
s ∈ P0 (s ≥ N (ε1)),

q
(ε2,w)
s ∈ P0 (s ≥ N (ε2)), . . . , q(εn,w)

s ∈ P0 (s ≥ N (εn)), . . . such that

‖vs − w + q(εj,w)
s ‖1 < εj for s ≥ N (εj) .

Let us define a sequence {ps} ⊂ P0 as follows:

ps = an arbitrary element of P0 for s < N (ε1) ,

ps = q(εj,w)
s for N (εj) ≤ s < N (εj+1) .

As for every ε > 0 we can find εj such that εj < ε, we see that the sequence
{ps} defined by this way has the following property: for every ε > 0 we can find
N = N (εj) such that

‖vs + ps − w‖1 < ε for s ≥ N ,(12)

i.e.
vs + ps → w in H1(Ω)

in the first norm 1‖.‖. (Let us stress that {ps} depends on w ∈ ṽ.)
Now we prove that {ps} is a Cauchy sequence in H1(Ω). We have

‖pm − pn‖0,P ≤ ‖(vm − vn) + (pm − pn)‖0,P + ‖vm − vn‖0,P ≤

≤ ‖(vm + pm)− (vn + pn)‖0 + ‖vm − vn‖0,P .(13)
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According to (5), {vs} is a Cauchy sequence in L2(ΩP ). Taking into account (12)
{vs + ps} is convergent in H1(Ω), therefore it is a Cauchy sequence in H1(Ω) and
consequently a Cauchy sequence in L2(Ω). Hence with respect to (13) {ps} is a
Cauchy sequence in L2(ΩP ). As P0 is a finite dimensional space all norms in P0

are equivalent, i.e.

c1‖p‖0,P ≤ ‖p‖1 ≤ c2‖p‖0,P ∀p ∈ P0 .

Let us note that the norm ‖.‖0,P is really the norm for polynomials of degree zero
(even of an arbitrary degree): the equality

‖p‖20,P =
∫

ΩP

p2 dx = 0 ,

where p ∈ P0, implies p ≡ 0 because mes2 ΩP > 0. Thus {ps} is a Cauchy
sequence in the norm of the space H1(Ω) and there exists an element p ∈ P0 such
that ps → p in H1(Ω).

Both of the relations vs + ps → w in the norm of H1(Ω) and ps → p in the
norm of H1(Ω) give

‖vm − vn‖1 ≤ ‖(vm + pm)− (vn + pn)‖1 + ‖pm − pn‖1 → 0 for m,n→∞ .

Thus {vs} is a Cauchy sequence in H1(Ω) and there exists an element v ∈ H1(Ω)
such that vs → v in the norm of the space H1(Ω), i.e. in the norm 1‖.‖. Hence
according to (3), vs → v in the norm 2‖.‖ so that B2 is a complete space. �
2.2 Remark. Let us note that the proof of the preceding inequality (1) does
not depend on the dimension of the domain. Further, the constant K(Ω) > 0
occurring in this inequality is independent of v.

2.3 Remark. The inequality

‖v‖2k ≤ K(Ω)
(
‖v‖20,P + |v|2k

)
∀v ∈ Hk(Ω)

can be proved in the same way. The only change is that we substitute H1(Ω) and
P0 by Hk(Ω) and Pk−1, respectively, where Pk−1 is the space of polynomials the
degree of which is not greater than k − 1.

3. Discrete form

So called discrete forms of Friedrichs’ inequality are studied with connections
of solving various variational problems by the finite element method (see, e.g., [8],
[1], [3]).

In this section we restrict ourselves to the two-dimensional case of discrete in-
equalities corresponding to inequality (1). Let us approximate a bounded two-
dimensional domain Ω by a domain Ωh with a polygonal boundary ∂Ωh the
vertices of which lie on ∂Ω. Let Th be a triangulation of Ωh, i.e. a set Th =
{T 1, T 2, . . . , Tm} consisting of a finite number of closed triangles which have the
following properties:

(1) Ω̄h =
⋃m
i=1 T i
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(2) two arbitrary triangles are either disjoint or possess a common vertex or
a common side

We assume that the points of ∂Ω where the condition of C2 -smoothness is not
satisfied are vertices of the triangles in Th.

We further assume that every triangulation Th consists of two subtriangulations
ThE and ThP such that

Th = ThE ∪ ThP , ThE ∩ ThP = ∅ .

The subtriangulation ThM is a triangulation of the polygonal domain ΩhM ap-
proximating ΩM (M = E,P ) and has all properties described above.

With every triangulation Th we associate three parameters h, h̄ and ϑ defined

h = max
T∈Th

hT , h̄ = min
T∈Th

hT , ϑ = min
T∈Th

ϑT

where hT and ϑT are the length of the greatest side and the smallest angle, re-
spectively, of the triangle T ∈ Th. We restrict ourselves to triangulations {Th}
(h ∈ (0, h0), h0 > 0) satisfying the conditions

ϑh ≥ ϑ0 > 0 ∀h ∈ (0, h0) ϑ0 = const(14)

h̄/h ≥ C0 > 0 ∀h ∈ (0, h0) C0 = const.(15)

Let us define a finite dimensional subspace of H1(Ωh) ∩ C(Ω̄h) by the relation

Xh = {v ∈ C(Ω̄h) : v|T is linear for all T ∈ Th} .

The space Xh is a finite element approximation of the space H1(Ω) defined on the
triangulation Th.

For the purpose of the proof of Theorem 3.3 let us set

ωh = Ω− Ω̄h , τh = Ωh − Ω̄ ,(16)

ωhM = ΩM − Ω̄hM , τhM = ΩhM − Ω̄M (M = E,P ) .(17)

In the proof we shall also need the following notions.
Let T ∈ Th be a boundary triangle lying along the curved part of ∂Ω. (It has

two vertices on ∂Ω.) The closed curved triangle T
id

with two straight sides and
one curved side, which is the part of ∂Ω, is called the ideal triangle associated with

the triangle T ∈ Th. The triangle T is an approximation of T
id

.

3.1 Definition. Let w ∈ Xh. The function

w̄ : Ω̄h ∪ Ω̄→ R1

is called the natural extension of w if

w̄ = w on Ω̄h

and
w̄|
T

id = p|
T
{id on T

id ⊃ T
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where p ∈ P1 is the linear polynomial satisfying

p|T = w|T .

(The symbol P1 denotes the space of all polynomials with the degree less than or

equal to one and T
id

denotes the ideal triangle which is approximated by T .)

In the proof of Theorem 3.3 the following estimates will be useful.

3.2 Lemma. Let w̄ be the natural extension of w ∈ Xh. Then we have

|w̄|1,εh ≤ Ch
1
2 |w̄|1 (ε = τ, ω),(18)

‖w̄‖0,εh ≤ Ch
1
2 ‖w̄‖0 (ε = τ, ω)(19)

where the constant C does not depend on h and w.

See the proof of [10, Lemma 28.8].

The inequality appearing in Theorem 3.3 is the discrete form of inequality (1)
because it is written only for the functions from the finite dimensional space Xh.

3.3 Theorem. Let Ω be a two-dimensional bounded domain with boundary ∂Ω
piecewise of class C2. Then we have

‖v‖21,Ωh ≤ C
(
‖v‖20,Ph + |v|21,Ωh

)
∀v ∈ Xh(20)

where the constant C > 0 does not depend on h ∈ (0, h0) and v.

Proof. According to (16), let us write for v ∈ Xh

‖v‖21,Ωh = ‖v̄‖21 + ‖v̄‖21,τh − ‖v̄‖
2
1,ωh = ‖v̄‖21 (1 + δτ − δω) ,(21)

where

δτ =
‖v̄‖21,τh
‖v̄‖21

, δω =
‖v̄‖21,ωh
‖v̄‖21

.(22)

Similarly, we obtain

‖v‖20,Ph + |v|21,Ωh = ‖v‖20,Ph + ‖v̄‖20,P − ‖v̄‖20,P + |v̄|21 + |v̄|21,τh − |v̄|
2
1,ωh =

=
(
‖v̄‖20,P + |v̄|21

)
(1 + ε∆ + ετ − εω) ,(23)

where

ε∆ =
‖v‖20,Ph − ‖v̄‖

2
0,P

‖v̄‖20,P + |v̄|21
,(24)
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εχ =
|v̄|21,χh

‖v̄‖20,P + |v̄|21
(χ = τ, ω) .(25)

It should be noted that the function v̄ appearing in ‖v̄‖0,P is the restriction (v̄)P
of v̄ (v ∈ Xh) to the domain ΩP and (v̄)P 6= v̄P = (vP )̄ . (We use the rule: first
indices, then bars.) Relations (21) and (23) imply

‖v‖21,Ωh
‖v‖20,Ph + |v|21,Ωh

=
‖v̄‖21

‖v̄‖20,P + |v̄|21
1 + δτ − δω

1 + ε∆ + ετ − εω
.(26)

Taking into account (1) we see that it suffices to prove

δχ = O(h), εχ = O(h) (χ = τ, ω), ε∆ = O(h) .(27)

As we have

δχ =
‖v̄‖21,χh
‖v̄‖21

≤
|v̄|21,χh
|v̄|21

+
‖v̄‖20,χh
‖v̄‖20

the estimate δχ ≤ Ch (χ = τ, ω) follows from (18) and (19). Similarly, as

εχ ≤
|v̄|21,χh
|v̄|21

the second estimate (27) for εχ follows from (18).
Now we estimate ε∆. For this purpose we denote by the symbols τΛ

hP , τΛ
hE the

parts of τhP , τhE along the common boundary Λ = ∂ΩP ∩ ∂ΩE and by τPhP , ωPhP
the parts of τhP , ωhP along the boundary ∂ΩP − Λ. (τhP , τhE , ωhP were defined
by (17).) Let us consider only such division of the domain Ω into subdomains ΩE
and ΩP demonstrated on Fig. 1, Fig. 2 and Fig. 3. Thus we can write

‖v‖20,Ph − ‖v̄‖
2
0,P = ‖v‖20,τP

hP
− ‖v̄‖20,ωP

hP
+ ‖v‖20,τΛ

hP
− ‖v̄‖20,τΛ

hE

and (24) gives

|ε∆| ≤
‖v‖20,τP

hP

+ ‖v̄‖20,ωP
hP

+ ‖v‖20,τΛ
hP

+ ‖v̄‖20,τΛ
hE

‖v̄‖20,P + |v̄|21
.(28)

We have
‖v‖20,τP

hP
≤ ‖v‖20,τh = ‖v̄‖20,τh .

Using (19) we obtain
‖v̄‖20,τh ≤ Ch‖v̄‖20 .

Thus the preceding relations imply

‖v‖20,τP
hP
≤ Ch‖v̄‖20(29)

and similarly

‖v̄‖20,ωP
hP
≤ ‖v̄‖20,ωh ≤ Ch‖v̄‖20 .(30)
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To estimate the remaining terms on the right-hand side of (28) we shall need
the following relation

max
T
|p| ≤ Ch−1

T ‖p‖0,T(31)

where p ∈ P1 and the constant C does not depend on T and p.
Relation (31) follows from [2, Lemma 2.2.6], [10, (9.4)] and the fact that |J | =

2 meas (T ).
It remains to estimate the terms in (28). It holds

‖v‖20,τΛ
hP

= ‖v̄‖20,τΛ
hP
.(32)

Let us denote πT = T − T id
. As meas(T id − T ) ≤ Ch3

T (see [10, (28.5)]) we find

using (31) and the inclusion T
id ⊂ T

‖v̄‖20,πT ≤ max
T
|v̄|2meas πT ≤ Ch3

T max
T
|v̄|2 ≤ ChT ‖v̄‖20,T .

Summing over all πT from τΛ
hP and considering (15), (32) and the fact that all

triangles T containing πT are interior triangles of the domain Ω we get

‖v‖20,τΛ
hP
≤ Ch‖v̄‖20 .(33)

The proof of the estimate

‖v̄‖20,τΛ
hE
≤ Ch‖v̄‖20(34)

follows the same lines.
Now we prove the third estimate in (27). Combining (28), (29), (30) with (33)

and (34) we obtain

|ε∆| ≤
Ch‖v̄‖20

‖v̄‖20,P + |v̄|21
.(35)

Thus, as v̄ ∈ H1(Ω) we can write by (1) and (35)

|ε∆| ≤
Ch‖v̄‖21

‖v̄‖20,P + |v̄|21
≤ K(Ω)h

which proves (27)3.
Because of validity (27) we have for h ∈ (0, h0)

1
2
≤ 1 + ε∆ + ετ − εω ,

1
2
≤ 1 + δτ − δω ≤ 2 .

Hence, the preceding estimates, relations (26), (1) and the fact that v̄ ∈ H1(Ω)
imply

‖v‖21,Ωh
‖v‖20,Ph + |v|21,Ωh

≤ 2K(Ω) (1 + δτ − δω) ≤ 4K(Ω) ∀v ∈ Xh.(36)
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Inequality (36) is inequality (20) with the constant C = 4K(Ω) where K(Ω) is the
constant appearing in (1). �

4. Applications

For two media the computation of nonlinear quasistationary two-dimensional
electromagnetic field leads to the nonlinear second order parabolic-elliptic initial-
boundary value problem of the following type.

There is given a two-dimensional bounded domain Ω and an open nonempty set
ΩP ⊂ Ω. We are looking for a function u = u(x1, x2, t) (magnetic vector potential)
such that

σ
∂uP
∂t

=
2∑
i=1

∂

∂xi

(
νP
∂uP
∂xi

)
+ fP in ΩP × (0, T ) ,

0 =
2∑
i=1

∂

∂xi

(
νE
∂uE
∂xi

)
+ fE in ΩE × (0, T ), ΩE = Ω− Ω̄P ,

uP (x1, x2, 0) = uP0 (x1, x2) in ΩP ,

u satisfies a boundary condition of Dirichlet type at least on a part of ∂Ω× (0, T )
and the transition conditions

[u]PE =

[
ν
∂u

∂n∗

]P
E

= 0 on ∂ΩE ∩ ∂ΩP .

Here the conductivity σ = σ(x1, x2) is a positive function on Ω̄, the reluctivity
νM = νM(x1, x2, | graduM |) is a positive function on ΩM × [0,∞) (M = E,P ),
fM = fM (x1, x2, t) is a given current density, uP0 = uP0 (x1, x2) is a given function
defined on ΩP and n∗ denotes the normal to ∂ΩE ∩∂ΩP oriented in a unique way.

The numerical solution by the finite element method of the above problem has
been studied, e.g., in [11], [12], [13], [9], [10]. Let us note that papers [11], [12], [13]
have been restricted to domains which can be covered by finite elements exactly;
only the domains Ω, ΩE and ΩP with polygonal boundaries have been considered.

Taking into account the introduced problem with a nonhomogeneous Dirich-
let boundary condition on a part Γ1 of the boundary we cannot use ”classical”
Friedrichs’ inequality. When we formulate the discrete problem corresponding to
this one by using the finite element method with linear functions on triangular el-
ements (the discretization in space) and for example by the implicit Euler method
(the discretization in time) then inequality (20) is used in the proof of the exis-
tence, and the uniqueness of the approximate solution. Inequality (1) is used in
the proofs of both the existence of the solution of the variational formulation of
this problem and the convergence of the method (see [7]).
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