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ARCHIVUM MATHEMATICUM (BRNO)Tomus 36 (2000), 279 � 286THREE-DIMENSIONAL CONFORMALLY FLATPSEUDO-SYMMETRIC SPACES OF CONSTANT TYPENORIO HASHIMOTO AND MASAMI SEKIZAWADedicated to Professor Old°ich Kowalski on the occasion of his birthdayAbstract. An explicit classi�cation of the spaces in the title is given. Theresulting spaces are locally products or locally warped products of the realline and two-dimensional spaces of constant curvature.IntroductionAccording to [3], [10], a pseudo-symmetric space of constant type is a Riemann-ian manifold (M; g) whose Riemannian curvature tensor �eld R satis�esR(X;Y ) �R = ~c (X ^ Y ) �R;(0.1)for arbitrary vector �elds X and Y on M , where X ^ Y is the endomorphism ofthe tangent bundle TM de�ned by(X ^ Y )Z = g(Y; Z)X � g(X;Z)Y;~c is a constant, and the dot in the both sides of (0.1) denotes the derivation onthe tensor algebra of TM induced by endomorphism of TM . A pseudo-symmetricspace of constant type with constant ~c = 0 is a semi-symmetric space.We have the following characterization of pseudo-symmetric spaces in dimensionthree (see [1, Proposition 11.2]):Proposition 0.1. A three-dimensional Riemannian manifold (M; g) is pseudo-symmetric of constant type with constant ~c if and only if its principal Ricci curva-tures �1; �2 and �3 locally satisfy the following conditions (up to a numeration):(1) �3 = 2~c,(2) �1 = �2 everywhere.1991Mathematics Subject Classi�cation: 53C20, 53C21, 53C25.Key words and phrases: Riemannian manifold, conformally �at space, pseudo-symmetricspace, warped product.This work was supported by the Grant-in-Aid for Scienti�c Research (C) 11640014.Received November 16, 1999.



280 N. HASHIMOTO, M. SEKIZAWAThe pseudo-symmetric spaces of constant type can be seen as a natural general-ization of certain homogeneous spaces. For instance, it follows from the paper byJ.Milnor [14] that the constant Ricci eigenvalues of a three-dimensional homoge-neous Riemannian space must satisfy some algebraic restrictions. But O.Kowalski[6] has shown that even if one prescribes (in dimension three) constant Ricci eigen-values not satisfying these restrictions then there still exist nonhomogeneous ex-amples. These examples belong to the class of pseudo-symmetric spaces of con-stant type. We refer to O.Kowalski [6, Section 9] or E. Boeckx, O.Kowalski andL.Vanhecke [1, Chapter 12] for more details. On the other hand, as concerns con-formally �at spaces, H.Takagi [16] has classi�ed all conformally �at homogeneousspaces.Now we understand that a next step of classi�cation of conformally �at spacesis that of conformally �at pseudo-symmetric spaces. Since conformal �atness ofa Riemannian manifold is described by the Ricci tensor, we receive a system ofpartial di�erential equations of the Ricci eigenvalues �1 = �2 for our classi�cation.Solving it, we shall give an explicit classi�cation of all three-dimensional locallyconformally �at pseudo-symmetric spaces of constant type. We shall see that theresulting spaces are locally products or locally warped products of the real lineand a two-dimensional space of constant curvature. We shall fully use an explicitclassi�cation of semi-symmetric spaces given by O.Kowalski [7] and by V.Hájková[5], and that of pseudo-symmetric spaces of constant type given by O.Kowalski [6]and by O.Kowalski and the second author [8]�[11].The authors would like to thank Professor O.Kowalski for his valuable com-ments on a preliminary version of this paper.1. Pseudo-symmetric space of constant typeLet (M; g) be a three-dimensional pseudo-symmetric space of constant type.Then, by Proposition 0.1, its Ricci operator Q has eigenvalues �1 = �2 6= �3,where �3 = 2~c is a constant. We choose a neighborhood eU of a �xed point m 2Mand a smooth vector �eld E3 of a unit eigenvectors of Q corresponding to �3 ineU. Let S : D2 �! eU be a surface through m which is transversal with respect toall trajectories generated by E3 at all cross-points and not orthogonal to such atrajectory at m. (The vector �eld E3 determines an orientation of S.) Then thereis a normal neighborhood U of m, U � eU, with the property that each point p 2 Uis projected to exactly one point �(p) 2 S via some trajectory.O.Kowalski has shown in [7, Theorem 2.1] (see also [10, Proposition 1.1]) thatthere exists a local coordinate system (U;w; x; y), which we call the adapted coor-dinate system, such that g = �!1�2 + �!2�2 + �!3�2 ;(1.1)



THREE-DIMENSIONAL CONFORMALLY FLAT PSEUDO-SYMMETRIC SPACES 281where 8><>: !1 = fdw ;!2 = Adx+ Cdw ;!3 = dy +Hdw :(1.2)Here f , A and C are smooth functions of the variables w, x and y, fA 6= 0, andH is a smooth function of the variables w and x. In particular, for each pointp 2 U, y(p) is the oriented length d+(�(p); p) of the trajectory generated by E3and joining p with �(p).The conditions that a Riemannian manifold is pseudo-symmetric of constanttype (that is, �1 = �2 6= �3 = 2~c, ~c = constant) are described by a system ofnine partial di�erential equations (A1)�(C3) in [7] and that in [10]. Solving thissystem, O.Kowalski [7] and V.Hájková [5] have given the explicit classi�cation ofall pseudo-symmetric spaces with ~c = 0 (that is, of all semi-symmetric spaces).(One can also refer [1, Chapter 6] for the full classi�cation.) O.Kowalski andthe second author [10]�[11] have given the explicit classi�cation of all pseudo-symmetric spaces with ~c 6= 0. (See also [12] and [1, Chapter 11].) Among the ninepartial di�erential equations, the equation (A3) is(A�)0w +R0x + SA0y � A�T = �fA(�1 � ~c) ;(A3)where 8>><>>: � = 1fA �A0w �C0x �HA0y� ;� = 12fA �H0x +AC 0y � CA0y�(1.3)and 8>>>><>>>>: R = f 0xA � C�+H� ;S = f 0y +C� ;T = C0y � f� :(1.4)In the general classi�cation of pseudo-symmetric spaces of constant type, the equa-tion (A3) does not give any additional condition for such a classi�cation becauseit involves the eigenvalue �1 = �2 which is not prescribed in advance. It has beentreated just as a formula for calculating �1, or equivalently, the scalar curvature.As concerns the classi�cation in the present paper, the equation (A3) gives anadditional condition because �1 is restricted by conformal �atness of (M; g) as weshall see later.Let fE1; E2; E3g be the local orthonormal frame dual to the coframe f!1; !2; !3gfrom (1.2). Then Ei; i = 1; 2; 3, are vector �elds of eigenvectors of the Ricci oper-ator Q corresponding to the eigenvalues �i, respectively. They are written in the



282 N. HASHIMOTO, M. SEKIZAWAform 8>>>>>><>>>>>>: E1 = 1fA �A @@w � C @@x �AH @@y� ;E2 = 1A @@x ;E3 = @@y :(1.5)The Levi-Civita connection r of (M; g) is given by8>>>>>>>>>><>>>>>>>>>>: rE1E1 = � f 0xfAE2 � aE3; rE1E2 = f 0xfAE1 � cE3;rE2E1 = �E2 � bE3 ; rE2E2 = ��E1 � eE3 ;rE1E3 = aE1 + cE2 ; rE2E3 = bE1 + eE2 ;rE3E1 = �bE2 ; rE3E2 = bE1 ;rE3E3 = 0 ;(1.6)where a = f 0yf ; b = � ; c = � � H 0xfA ; e = A0yA :(1.7)The last formularE3E3 = 0 in (1.6) implies that the trajectories of the unit vector�eld E3 (consisting of the eigenvectors of the Ricci operator Q corresponding to�3 = 2~c ) are geodesics of (M; g). We call them principal geodesics of (M; g). Thefollowing notion is crucial in the classi�cation.De�nition 1.1. A smooth surface N � (M; g) is called an asymptotic leaf if itis generated by the principal geodesics and its tangent planes are parallel alongthese principal geodesics with respect to the Levi-Civita connection r of (M; g).There are four types of three-dimensional pseudo-symmetric spaces of constanttype: (E) There is no asymptotic leaf through every point of M .(H) There are exactly two asymptotic leaves through every point ofM .(P) There is exactly one asymptotic leaf through every point of M .(P`) There are in�nitely many asymptotic leaves through every pointof M .They are called elliptic, hyperbolic, parabolic, and planar type, respectively. If weput � = (e � a)2 + 4bc ;(1.8)then they are distinguished by the conditions � < 0, � > 0, � = 0, and e� a =b = c = 0, respectively.



THREE-DIMENSIONAL CONFORMALLY FLAT PSEUDO-SYMMETRIC SPACES 2832. Main resultA locally conformally �at space is a Riemannianmanifold (M; g) which is locallyconformal to a �at Riemannian manifold (M0; g0), that is, there exists a localdi�eomorphism � of M to M0 such that the metric g is proportional to the pullback ��g0. A three-dimensional Riemannianmanifold (M; g) is locally conformally�at if and only if the tensor �eld Q � (1=4) Sc(g) Id is a Codazzi tensor, whereSc(g) is the scalar curvature of (M; g) and Id is the identity transformation on thetangent bundle TM ; or equivalently, if and only if(rXQ)Y � 14X(Sc(g))Y = (rYQ)X � 14Y (Sc(g))X(2.1)holds for every vector �elds X and Y on M . We refer L. P. Eisenhart [4] for moredetails.Now again, let (M; g) be a three-dimensional pseudo-symmetric space of con-stant type with constant ~c. Then we have Sc(g) = 2(�1 + ~c). We take X and Yin (2.1) from the local orthonormal frame fE1; E2; E3g introduced in the previoussection, and use the fact that QEi = �iEi; i = 1; 2; 3. Then locally conformal�atness for (M; g) gives a system of seven partial di�erential equations:�01y + 2(�1 � 2~c)a = 0 ;(2.2) �01y + 2(�1 � 2~c)e = 0 ;(2.3) b = 0 ;(2.4) c = 0 ;(2.5) H 0x = 0 ;(2.6) �01x = 0 ;(2.7) A�01w �C�01x � AH�01y = 0 :(2.8)The system of partial di�erential equations for our problem is that of (2.2)�(2.8)and (A3).First, we consider the case that �1 = �2 is constant.Proposition 2.1. The three-dimensional locally conformally �at pseudo-symmetricspace of constant type with constant Ricci eigenvalues �1 = �2 6= �3 is semi-symmetric.Proof. Since �1 = �2 is constant, we get from (2.3) that e = 0 because �1�2~c 6= 0.Hence, by (1.7), A0y = 0. Now we use the partial di�erential equation (B1) fromO.Kowalski [6], namely A00yy � A�2 = �~cA:(B1)Substituting A0y = 0 and � = b = 0 (from (1.7) and (2.4)) into (B1), we obtain~c = 0 because A 6= 0. Thus, the space is semi-symmetric.Corollary 2.2. Let (M; g) be a three-dimensional locally conformally �at pseudo-symmetric space of constant type with nonzero constant ~c. Then the Ricci eigen-value �1 = �2 of (M; g) di�erent from �3 = 2~c is not constant.



284 N. HASHIMOTO, M. SEKIZAWANow we remark that if (M; g) is a three-dimensional locally conformally �atsemi-symmetric space with constant Ricci eigenvalues �1 = �2 6= 0 = �3, then(M; g) is locally product R�N (�1) of the real line R and a two-dimensional spaceN (�1) of constant curvature �1, and vice versa. We refer [7, pp.459�460] for moredetails.In the locally irreducible case we haveTheorem 2.3. Every three-dimensional locally irreducible conformally �at pseudo-symmetric space of constant type is a space of planar type.Proof. As remarked above, the Ricci eigenvalue �1 = �2 in this case is not con-stant. Subtracting (2.3) from (2.2), we have e � a = 0 since �1 � 2~c 6= 0. Thistogether with (2.4) and (2.5) implies the assertion.Here we refer the classi�cations given by O.Kowalski [6]�[7], by V.Hájková [5],and by O.Kowalski-M. Sekizawa [8]�[11]. Then, by Theorem 2.3, the spaces inconsideration are locally warped products in the sense of B.O'Neill [15]:Proposition 2.4. The metrics of three-dimensional locally irreducible conformally�at pseudo-symmetric spaces of constant type with constant ~c are locally warpedproducts. These metrics are described, in terms of the adapted coordinate system,as g = A2 ��2(dw)2 + (dx)2�+ (dy)2 ;(2.9)where � = �(w; x) is a smooth function of the variables w and x, and the warpingfunction A = A(y) is given byA =8>>><>>>: y if ~c = 0 ;sinh(�y) or cosh(�y) if ~c = ��2 ;sin(�y) if ~c = �2 :(2.10)In particular, the coe�cients C and H from (1.2) vanish.Proposition 2.5. The Ricci eigenvalue �1 = �2 of a three-dimensional locallyirreducible conformally �at pseudo-symmetric space of constant type with constant~c depends only on one variable. More precisely, �1 = �2 is given, in terms of theadapted coordinate system, by �1 = � ~a2A2 + 2~c ;(2.11)where ~a is a positive constant and A is a function given by (2.10).Proof. Since, by Proposition 2.4, C = H = 0 in (1.2), the equation (2.8) reducesto �01w = 0 because A 6= 0. This together with (2.7) means that �1 depends only onthe variable y. Now, we have a = e because (M; g) is planar (see Theorem 2.3). Itmeans that the partial di�erential equation (2.2) coincides with (2.3). Substituting



THREE-DIMENSIONAL CONFORMALLY FLAT PSEUDO-SYMMETRIC SPACES 285for e in (2.3) from (1.7), we can rewrite (2.3) in the form(�1 � 2~c)0y�1 � 2~c = �2A0yA :(2.12)Solving this equation, we obtain (2.11).It remains the partial di�erential equation (A3). Substituting f = �A into (1.3)and into (1.4), and using C = H = 0 by Proposition 2.4, we obtain (A3) in theform for a partial di�erential equation of the function � = �(w; x):�00xx + �(A0y)2 + (�1 � ~c)A2� � = 0 :(2.13)This is the basic equation for getting the following main result:Theorem 2.6. Every three-dimensional locally irreducible conformally �at pseudo-symmetric space (M; g) of constant type with constant ~c is locally a warped productR�A N (k)of the real line R and a two-dimensional space N (k) of constant curvature, whereA = A(y) is a warping function of R given by (2.10). The constant k can beexpressed as follows:(1) If (M; g) is a semi-symmetric space, then k = 1� ~a2;(2) if (M; g) is a pseudo-symmetric space of constant type with constant ~c =��2, then k = �2 � ~a2 in the case A(y) = sinh(�y) and k = ��2 � ~a2 inthe case A(y) = cosh(�y);(3) if (M; g) is a pseudo-symmetric space of constant type with constant ~c = �2,then k = �2 � ~a2,where ~a is a positive constant. Moreover, in each case, the Ricci eigenvalues of(M; g) are �1 = �2 given by (2.11) and �3 = 2~c.Proof. Due to Propositions 2.4 and 2.5, we only need to calculate the Gaussiancurvature K of the metric �2(dw)2 + (dx)2. Since K = ��00=�, we obtain from(2.13) that K = ��00� = (A0y)2 + (�1 � ~c)A2 :(2.14)Substituting here for A and �1 from (2.10) and (2.11), respectively, we obtaineasily the corresponding constant values of K = k.Remark 1. After we know already (by Proposition 2.4) that our spaces arewarped products, the �rst part of Theorem 2.6 follows from a more general re-sult by J.Mike² [13, Section 4.3].Remark 2. J.Deprez, R.Deszcz and L.Verstraelen have given in [2, Corollary3.2] an example of a three-dimensional locally conformally �at pseudo-symmetricspace. Their example belongs to a class of spaces of constant type with negativeconstant.
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