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Abstract. In this survey paper we consider differential and integral equa-
tions in locally convex spaces (in particular, in these sequentially complete
spaces which contain a compact barrel). We present recently obtained by
us results concerning the existence and topological structure of some basic
nonlinear equations and we accent applications in our results some theo-
rems of functional analysis.
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1. Introduction

Consider the initial value problem

x′ = f(t, x), x(0) = x0,(1)

where f is a bounded continuous function taking values in a quasicomplete locally
convex space E. The idea to consider problem (1) in these spaces goes back to
Millionščikov [13] and Hukuhara [8] who proved that (1) has a solution if the
function f is compact or it satisfies the Kamke condition. The existence of solutions
of (1) under different assumptions on E or f has been investigated later by many
authors (see e.g. [1], [12] and [18]).
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Moreover, there have appeared recently papers concerning the existence and
topological structure of solutions of nonlinear integral equations in locally convex
spaces (see e.g. [9] and [18]).

In Section 2 we present recently obtained by us Kneser type theorems for the
equation of nth order in quasicomplete locally convex spaces. The main conditions
in these results are formulated in terms of the Sadovski measure of noncompactness
(see [16] for the definition and properties).

In Section 3 we consider sequentially complete locally convex spaces. Moreover,
we assume that these spaces contain a compact barrel. In [1] Astala gave the
following characterization of these spaces.

Lemma 1. E is a sequentially complete locally convex space containing a compact
barrel iff

E = (X ′, τ),

where X ′ is the dual of a barrelled normed space X and τ is a locally convex
topology of X ′ that is stronger than the w∗-topology but weaker than the topology
of precompact convergence; briefly

σ(X ′, X) ≤ τ ≤ λ(X ′, X).

By the above lemma we can use in the space E the notion of the norm.
Moreover, in [1] Astala proved that for each continuous mapping f : [0, a] ×

E → E, where E is as above, there exists a local solution of the problem (1).
Additionally, he noted that applying the method from [17] one can prove that
there exists an interval J ⊂ I such that the set of all solutions of (1), defined on J ,
and considered as a subset of the space C(J,E) of all continuous functions J → E

with the topology of uniform convergence is compact and connected; shortly: it
has the Kneser property.

Here we present results concerning the existence of continuous solutions of the
nonlinear Volterra integral equation

x(t) = g(t) +

∫

A(t)

f(t, s, x(s))ds, t ∈ A,(2)

and the Urysohn integral equation

x(t) = g(t) + λ

∫

A

f(t, s, x(s))ds, t ∈ A, λ ∈ R,(3)

considered in the space E, where A = [0, a1] × [0, a2] × . . . × [0, an] (ai > 0,
i = 1, . . . , n) and A(t) = {s ∈ Rn : 0 ≤ si ≤ ti, i = 1, . . . , n}. In the above
equations the sign ”

∫
” stands for the Riemann integral.

Moreover, we characterize the topological structure of the solutions of (2) and
the Darboux problem for the hyperbolic type equation.



DIFFERENTIAL AND INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES 417

2. Differential equation of nth order

Let E be a quasicomplete locally convex space and let P be a family of seminorms
which generate the topology of E. Moreover, let I = [0, a] be a compact interval
in R and B = {x ∈ E : pi(x) ≤ b, i = 1, . . . , k}, b > 0, k ∈ N and p1, . . . , pk ∈ P .

Consider the problem

x(n) = f(t, x)(4)

x(j)(0) = xj , j = 0, . . . , n − 1,

where xj ∈ E for j = 0, . . . , n − 1, x0 = 0 and f : I × B → E is a bounded,
continuous function.

Denote by (βp(·))p∈P the Sadovski measure of noncompactness. Define

ϕp(t,X) = lim
r→0+

βp(f(Itr × X)) for t ∈ (0, a) and X ⊂ B,

where Itr = (t−r, t+r)∩I (cf. [14]). Moreover, let Bp(0, r) = {x ∈ E : p(x) ≤ r}.

Theorem 1. ([3]) Assume that for every seminorm p ∈ P there exists a contin-
uous function up, defined on I and such that up(t) > 0 for t > 0, up(0) = . . . =

u
(n−1)
p (0) = 0, u

(n)
p (t) is positive , integrable in Lebesgue sense and

ϕp(t,X) ≤
u

(n)
p (t)

up(t)
βp(X)(5)

for t ∈ (0, a) and for every bounded set X ⊂ B, and

lim
t→0+ r→0+

βp(f(t, Bp(0, r)))

u
(n)
p (t)

= 0.(6)

Then there exists an interval J = [0, d] ⊂ I such that the set of all solutions of
(4), defined on J and considered as a subset of the space C(J,E) is nonempty,
compact and connected.

Note that the assumption (5) in Th. 2 is inspirated by the paper [7]. In the
case of separable spaces Th. 2 has a simpler form, namely, the following theorem
holds.

Theorem 2. ([3]) If the space E is separable, then Theorem 2 remains true, if
one replaces the assumption (5) by the following one

βp(f(t,X)) ≤
u

(n)
p (t)

up(t)
βp(X).(7)

where X ⊂ B is any bounded set, t ∈ (0, a] and p ∈ P.
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Using another method of a proof as in the case of Th. 1 and Th. 2, namely
Reichert’s connectness principle from [15], the first author of this paper proved
the following

Theorem 3. ([2]) In the assumptions of Th.1 instead of (6) assume that

lim
t→0+ r→0+

ϕp(t, Bp(0, r))

u
(n)
p (t)

= 0.

Then there exists an interval J = [0, d] ⊂ I such that the set of all solutions of
(4), defined on J , is nonempty, compact and connected in C(J,E).

3. Nonlinear integral equations

Consider first the equation (2). Arguing similarly as in [1] we obtain the following

Theorem 4. ([4]) Assume that the functions g : A → E and f : A2 ×E → E are
continuous. Then the equation (2) has a local continuous solution.

To prove the above theorem we construct the sequence of the approximate
solutions of the problem (2) and applying generalized Ascoli’s theorem ([10], p.81)
we show that this sequence has a convergent subsequence to the solution of (2).

The following Kneser-type theorem extends Th. 4.

Theorem 5. ([5]) Under the above assumptions there exists a set

J = [0, d1] × [0, d2] × . . . × [0, dn] ⊂ A

such that the set S of all continuous solutions of (2), defined on J , is nonempty,
compact and connected in the space C(J,E).

To prove Th. 5 one can not apply the method from [17]. Now, we sketch the
idea of the proof of Th. 5. Let r be any positive number. Since the ball Br = {x ∈
E : ‖x‖ ≤ r} is convex, ballanced, closed, bounded and sequentially complete,
in view of the Banach-Mackey theorem ([10], p.91) it is absorbing by the barrel
and therefore it is compact. Hence for every number r > 0 there exists a number
mr > 0 such that

‖f(t, s, x)‖ ≤ mr for (t, s) ∈ A and x ∈ Br

(cf. Lemma 1). Now, knowing that f is locally bounded we can define J = [0, d1]×

[0, d2] × . . . × [0, dn] in the classical way. Denote by B̃ the set of all continuous

functions J → Bb, where b is the suitably choosen number. We consider B̃ as a
subspace of C(J,E). Set

G(x)(t) = g(t) +

∫

A(t)

f(t, s, x(s))ds, t ∈ J, x ∈ B̃.
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One can easy show that G(B̃) ⊂ B̃ and the family G(B̃) is equiuniformly continu-
ous. Moreover, in view of the Krasnoselski-Krein-type lemma (cf. [11]) we deduce
that G is continuous.

For any ε > 0 denote by Sε the set of all x ∈ B̃ such that ‖x(t) − G(x)(t)‖ < ε

for every t ∈ J . It can be proved (cf. [6]) that for sufficiently small ε > 0, the
set Sε is nonempty and connected. Using this fact, the generalized Ascoli theorem
and the continuity of G we infer that S is nonempty and compact.

To prove that S is connected it is enough to apply standard arguments as e.g.
in [6].

Now, we pass to the equation (3). As in the above theorems we assume that
the functions g : A → E and f : A2 × E → E are continuous. Our next result is
the following

Theorem 6. ([5]) Under the above assumptions there exists η > 0 such that for
λ ∈ R with | λ |< η, the equation (3) has a continuous solution defined on A.

Analogously as in the proof of Th. 5 we deduce that f is locally bounded, next
we define η and the subset B̃ ⊂ C(A,E) in the classical way. Put

G(x)(t) = g(t) + λ

∫

A

f(t, s, x(s))ds, t ∈ A, x ∈ B̃.

The operator G maps continuously B̃ into itself. Let V = convG(B̃). By the
generalized Ascoli theorem we deduce that V is compact and we can apply the
Schauder-Tychonoff theorem for the mapping G |V .

Now, let pass on to the Darboux problem for the hyperbolic partial differential
equation.

Let B = {z ∈ E : ‖z‖ ≤ b}, A = [0, a1] × [0, a2] (a1, a2 > 0) and let
f : A × B → E be a continuous mapping. Again, by the Banach-Mackey theorem
the mapping f is norm-bounded on A×B. In view of this, we choose a subrectangle
J = [0, d1]×[0, d2] in the classical way and consider the following Darboux problem

∂2z

∂x∂y
= f(x, y, z), (x, y) ∈ J,

z(x, 0) = 0, 0 ≤ x ≤ d1, z(0, y) = 0, 0 ≤ y ≤ d2.(8)

It can be easily seen that the problem (8) is equivalent to the following integral
equation

z(x, y) =

x∫

0

y∫

0

f(ξ, η, z(ξ, η))dξdη, (x, y) ∈ J,
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where the sign”
∫ ∫

” stands for the Riemann integral. In view of this equivalence,
as a corollary from Th. 5 we obtain the following Kneser-type characterization for
the problem (8).

Theorem 7. ([5]) Under the above assumptions the set of all solutions of (8),
defined on J , is nonempty, compact and connected in C(J,E).
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