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1. Introduction

We consider systems of the form

ẋ = f(x) + εg(x, α), x ∈ R2, ε, α ∈ R,(1)

where f , g are Cr, r ≥ 2, and bounded on bounded sets, ε is a small parameter.
Such systems are viewed as planar systems with a small perturbation which de-
pends on a real parameter α. If we assume that unperturbed system (for ε = 0)
possesses a saddle connection, then a natural question arises whether there are val-
ues of a parameter α for which a perturbed system possesses a saddle connection.
There are many results related to similar questions, see for instance [1] for the
problem of existence of periodic orbits in a perturbed system, or [4, §4.4], where
the impact of a small time-dependent periodic perturbation on homoclinic orbit
in Hamiltonian systems is studied. The paper [3] explores existence and number
of periodic and homoclinic orbits, but only for a particular Hamiltonian system
(whirling pendulum equation) with a special perturbation (a friction). None of
the results in mentioned (and other) works has been directly applicable to our
problem. To solve it, we follow a geometrical point of view as it is presented in [2].
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2. Assumptions and background material

We will assume that for ε = 0 (1) has two saddle points p1 and p2, which are
connected by heteroclinic trajectory Γ . (The reasoning in the case of a saddle
connected to itself by a homoclinic loop is very similar). More precisely, one branch,
say Γu, of the global unstable manifold Wu of p1 coincides with one branch, say
Γ s of the global stable manifold W s of p2, and they form a saddle connection Γ

(see Fig. 1a).

p2p1

Γ

p1 p2

Γ u

Γ s

a) b)

Fig. 1. The phase portrait of ẋ = f(x) + εg(x, α) for a) ε = 0, b) ε 6= 0.

This situation is not resistent to perturbations – in general, any perturbation
will break the saddle connection, although the local phase portraits will not change
under a small perturbation (see Fig. 1b). Particularly, the following facts are well-
known for (1) with ε 6= 0 (for details we refer the reader to [2, §4.5] and the
references given there):

F1 For each ε sufficiently small, (1) has two unique saddles pε
1 = pε

1 + O(ε),
pε
2 = pε

1 + O(ε). This is a straightforward application of the implicit func-
tion theorem, since Jacobi matrices Df(p1), Df(p2) are invertible (they have
nonzero real eigenvalues).

F2 Perturbed local stable and unstable manifolds of the saddles pε
1, pε

2‘are Cr-
close to unperturbed local stable and unstable manifolds of the saddles p1, p2.
This fact follows from invariant manifold theory.

F3 If we denote by γ(t) a solution of the unperturbed system lying in Γ , by γu(t)
and γs(t) solutions of the perturbed system lying in Γu

ε and Γ s
ε (branches of

Wu
ε and W s

ε corresponding to Γu and Γ s), the following expressions holds,
with uniform validity in the indicated intervals:

γs(t) = γ(t) + εγs
1(t) + O(ε2), t ∈ [0,∞),

γu(t) = γ(t) + εγu
1 (t) + O(ε2), t ∈ (−∞, 0].

(2)

Here γs
1(t) and γu

1 (t) are solutions of the first variational equations

γ̇
s,u

1 (t) = Df(γ(t))γs,u

1 (t) + g(γ(t), α).(3)
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This fact represents both local and global dynamics – near a saddle point
(infinite time interval) it is governed by exponential attraction and repulsion,
while away from a saddle (finite time interval) the closeness of solutions may
be derived thanks to Gronwall’s inequality.

In what follows, we will look for values of parameter α for which the saddle
connection persists. The main idea is to measure, in some sense, the distance
between perturbed branches Γu

ε and Γ s
ε of the global manifolds Wu

ε and W s
ε .

3. The distance function

Let p ∈ Γ be a nonsingular point (f(p) 6= 0), and pu ∈ Γu
ε , ps ∈ Γ s

ε are lying on
the normal f⊥(p) to Γ at p (Fig. 2). Then we define the oriented distance between
Γu

ε and Γ s
ε at the point p as

d(ε, α) =
f(p) ∧ (pu − ps)

|f(p)|
,

where a ∧ b = a⊥ · b is the wedge product.
We denote γ(t), γs(t) and γu(t) solutions lying in Γ , Γ s

ε and Γu
ε for which

γ(0) = p, γs(0) = ps, γu(0) = pu.(4)

Using (2) and (4), we can write

d(ε, α) = ε
f(γ(0)) ∧ (γu

1 (0) − γs
1(0))

|f(γ(0))|
+ O(ε2).

Now we define the time dependent distance function

∆(t) = f(γ(t)) ∧ (γu
1 (t) − γs

1(t))

which may be written as ∆(t) = ∆u(t) − ∆s(t) with ∆s,u(t) = f(γ(t)) ∧ γ
s,u

1 (t).
Note that

d(ε, α) = ε
∆(0)

|f(γ(0))|
+ O(ε2).

f⊥(p)

ps

p

pu

Γ s

Γ u

Fig. 2. Definition of the distance function.
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The derivative of ∆s,u(t) with respect to time is

∆̇s,u(t) = Df(γ(t))γ̇(t) ∧ γ
s,u

1 (t) + f(γ(t)) ∧ γ̇
s,u

1 (t).

Using (3) and the fact that γ̇(t) = f(γ(t)), we obtain, after some matrix calcula-
tions,

∆̇s,u(t) = Tr (Df(γ(t))) ∆s,u(t) + f(γ(t)) ∧ g(γ(t), α).

Integrating the last equation from 0 to ∞ for ∆s and from −∞ to 0 for ∆u yields

∆s(∞) − ∆s(0) =

∞
∫

0

f(γ(t)) ∧ g(γ(t), α)e
−

∫ t

0

Tr (Df(γ(s))) ds
dt,

∆u(0) − ∆u(−∞) =

0
∫

−∞

f(γ(t)) ∧ g(γ(t), α)e

∫ 0

t

Tr (Df(γ(s))) ds
dt.

Since
∆s(∞) = lim

t→∞
f(γ(t)) ∧ γs

1(t),

where γs
1(t) is bounded and limt→∞ f(γ(t)) = f(p2) = 0, we have ∆s(∞) = 0.

Similarly ∆u(−∞) = 0. Then

∆s(0) =

∞
∫

0

f(γ(t)) ∧ g(γ(t), α)e
−

∫ t

0

Tr (Df(γ(s))) ds
dt.

In the case when the unperturbed system is Hamiltonian, i.e. f =

(

∂H

∂x2
,−

∂H

∂x1

)

for some differentiable function H(x1, x2), we have Tr (Df) ≡ 0, and

∆(0) =

∫

∞

−∞

f(γ(t)) ∧ g(γ(t), α)dt,

which is the homoclinic Melnikov function [2, p. 187].
In the next, we will use more suitable notation ∆(0) = M(α), which takes into

account the fact that ∆(0) depends on α. Thus

d(ε, α) = ε
M(α)

|f(p)|
+ O(ε2).(5)

Now we are ready to state and prove the main result:

Theorem 1. Let there exist α0 such that M(α0) = 0, M ′(α0) 6= 0. Then for each

ε sufficiently small there exists α(ε) = α0 + O(ε) such that the perturbed system

ẋ = f(x) + εg(x, α(ε))

possesses a saddle connection, which is Cr-close to the saddle connection of the

unperturbed system.
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Proof. We rewrite (5) in the form d(ε, α) = εd(ε, α), where

d(ε, α) =
M(α)

|f(p)|
+ O(ε).

Then, for ε 6= 0, d vanishes if and only if d vanishes. For α0 with indicated prop-
erties we obtain

d(0, α0) = 0,
∂d

∂α
(0, α0) 6= 0.

The implicit function theorem ensures the existence of a smooth curve of points
(ε, α(ε)) passing throw (0, α(0)), α(0) = α0, with a property

d(ε, α(ε)) = 0.

It means that the oriented distance between Γu
ε and Γ s

ε at the point p is zero,
which implies, thanks to the uniqueness theorem, that they coincide, forming a
saddle connection. The Cr-closeness is ensured by F3.

4. Example

We will seek parameter α0 for which there exists a smooth curve of parameters
α(ε) with the property: the planar system

ẋ = y

ẏ = − sinx + εy(cosx + α(ε))
(6)

has a saddle connection that is Cr-close to the upper saddle connection of the
planar pendulum equation, i.e. the system

ẋ = y

ẏ = − sinx.
(7)

To obtain the value of α0, we will compute M(α) for (6). First, we recall that the
planar pendulum equation (7) is a Hamiltonian system with the energy

H(x, y) =
y2

2
− cosx + 1.

Saddles −π, π are connected by two heteroclinic orbits

y = ±
√

2(cosx + 1)

(upper and lower saddle connections) corresponding to the energy level h = 2.
Then

M(α) =

∫

∞

−∞

y2(t)(cos x(t) + α)dt.



512 HANA LICHARDOVÁ

Using the fact that ydt = dx, and trigonometrical identity cosx + 1 = 2 cos2
x

2
,

we obtain that along the upper saddle connection

M(α) =

∫ π

−π

y(cosx + α)dx = 8(α +
1

3
).

Consequently, if we denote α0 = −
1

3
, then

M(α0) = 0, M ′(α0) 6= 0.

By Theorem 1, for each ε sufficiently small there exists α(ε) = − 1
3 + O(ε) such

that (6) has an upper saddle connection. Moreover, from the definition of d(ε, α)
we can deduce that for α > α(ε) the unstable manifold of [−π, 0] is lying above
the stable manifold of [π, 0], and reversely for α < α(ε) (see Fig. 3, where the
situation is depicted for two values of ε). The similar result may be obtained for
the lower saddle connection.
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Fig. 3. Phase portraits of (6).
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