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Abstract. We consider the boundary value problems for the fourth order
nonlinear differential equation uIV = f(x, u) together with three different
boundary conditions (the Dirichlet, the periodic and the Navier boundary
conditions). We discuss the existence results for these boundary value prob-
lems at resonance. Our results contain the Landesman–Lazer type condi-
tions. We also show some numerical results concerning Fuč́ık’s spectrum for
the boundary value problems for the differential equation uIV = µu+−νu−,
where u+ = max{u, 0} and u− = max{−u, 0}, together with our three
boundary conditions.
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1. Introduction

In this paper, we introduce some results concerning the boundary value prob-
lems for a fourth order differential equation. These results are the main results
of the diploma thesis [4] that consists of three parts. The first part deals with
the regularity problem of weak solutions, the second one describes Fuč́ık’s spec-

trum and the third one concerns the existence of at least one weak solution of our
boundary value problems at resonance. This paper covers only the second and the
third parts of the thesis [4].

⋆ Research supported by the Grant Agency of the Czech Republic, grant # 201/00/0376,
and by the Ministry of Education of the Czech Republic, grant # VS 97156.
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2. Fuč́ık’s spectrum

In this section, we investigate Fuč́ık’s spectrum of the boundary value problems
for a fourth order differential equation. Let us consider a differential operator
L : D(L) ⊂ L2(Ω) → L2(Ω), where Ω is a bounded domain with a smooth
boundary. We define its Fuč́ık’s spectrum as the following set

A−1(L) = {(µ, ν) ∈ R2 | Lu = µu+ − νu− has a nontrivial solution},

where u+ = max{u, 0} and u− = max{−u, 0} are the positive and the negative
parts of the function u. Let us denote the spectrum of L by

σ(L) = {λ ∈ R | Lu = λu has a nontrivial solution}.

Then we have {(λ, λ) ∈ R2 | λ ∈ σ(L)} ⊆ A−1(L) and therefore we can regard
Fuč́ık’s spectrum A−1(L) as a generalization of the spectrum σ(L).

In our case, the differential operator L is defined by

Lu(x) =
d4u

dx4
for all u ∈ D(L).

So, the main goal of our investigation will be the boundary value problems for
the fourth order differential equation

uIV = µu+ − νu−(1)

together with different type of boundary conditions. The knowledge of Fuč́ık’s

spectrum is essential for studying various mathematical models, especially models
with jumping nonlinearities (see e.g. [5] for some concrete applications).

Fuč́ık’s spectrum of the boundary value problems for the second order differ-
ential equation

u′′ + µu+ − νu− = 0

together with the periodic or the Dirichlet boundary conditions is well known
and can be described analytically by some explicit formulas (see [2]). But in
the case of the boundary value problems for the fourth order differential equa-
tion (1), the situation is absolutely different and much more complicated. First of
all, concerning these boundary value problems, we cannot describe corresponding
Fuč́ık’s spectrum by some analytic explicit formulas, and only some kinds of its
qualitative properties are known (see the papers [3], [1]). Note that in the recent
paper [1], the asymptotic behavior of Fuč́ık’s spectrum is also studied.

2.1. The periodic boundary value problem

Let us consider the periodic boundary value problem of the form
{

uIV(x) = λu(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π).
(2)
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The eigenvalues of this boundary value problem (2) form the sequence

λk = k4, k = 0, 1, 2, 3, . . .(3)

The eigenvalues λk, k = 1, 2, 3, . . . are of multiplicity 2 and two linearly inde-
pendent orthogonal eigenfunctions correspond to each of them. We denote these
orthogonal eigenfunctions by vk,1 and vk,2. They are of the form

v0(x) = 1, vk,1(x) = sin kx, vk,2(x) = cos kx, k = 1, 2, 3, . . .(4)

2.1.1. Fuč́ık’s spectrum Let us consider the periodic boundary value problem

{

uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π).
(5)

For further considerations, let us consider the direct periodic extension to the whole
real line R of each solution u of this boundary value problem (5). Let us denote
ϕ ∈ ](3/4)π, π[ the smallest positive root of the equation tanx + tanhx = 0.
Further, let us define the auxiliary functions f and g by the formulas

f(x) =
coshx cosx

coshx sinx+ sinhx cosx
, g(x) =

coshx sinx− sinhx cosx

coshx sinx+ sinhx cosx
(6)

for x ∈ ]0, ϕ[. The following theorem, which is proved in the paper [3] (some
corrections of the analytical bounds for the spectrum is given in [4]), provides the
description of the first branch of Fuč́ık’s spectrum.

Theorem 1. The set S1 of all pairs (a, b) ∈ ]0,+∞[2 such that there exists a non-

trivial 2π-periodic solution of the boundary value problem (5), which is composed

of two semi-waves, is a curve (a, b(a)), where b(a) is a decreasing C∞-function

defined in ]ϕ/π,+∞[ with lima→+∞ b(a) = ϕ/π.
The curve S1 is symmetric with respect to the straight line b = a and fulfils

S1 ⊂ G1, where G1 is the set of all pairs (a, b) ∈ ]ϕ/π,+∞[2 such that

for b ≥ a,
[

α(a, b) ≥ π

2
, ξ(a, b) ≥ 0

]

∨
[

α(a, b) <
π

2
, ξ(a, b) ≥ 0 ≥ ψ(a, b)

]

,(7)

for b ≤ a,
[

β(a, b) ≥ π

2
, ψ(a, b) ≥ 0

]

∨
[

β(a, b) <
π

2
, ψ(a, b) ≥ 0 ≥ ξ(a, b)

]

,(8)

where

α(a, b) = bπ

(

1 − 1

2a

)

, β(a, b) = aπ

(

1 − 1

2b

)

,

ξ(a, b) =

(

b

a

)2

− g

(

πa

(

1 − 1

2b

))

, ψ(a, b) =

(

a

b

)2

− g

(

πb

(

1 − 1

2a

))

.
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Fig. 1: The correct bounds (7), (8), (9).
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Fig. 2: Fuč́ık’s spectrum for the BVP (5).

The analytical bounds (7) and (8) are shown in the Figure 1. By virtue of pre-
vious Theorem 1, we can summarize the actual knowledge of Fuč́ık’s spectrum for
the periodic boundary value problem (5) into the following items (see also [3]):

1. The set S of all pairs (a, b) ∈ ]0,+∞[2, for which there exists a nontrivial
2π-periodic solution of the boundary value problem (5), is the countable set
{Sk, k ∈ N} of C∞-curves, where Sk = {(a, b) ∈ ]0,+∞[2, (a/k, b/k) ∈ S1} for
k = 2, 3, . . . , the description of the curve S1 is given by Theorem 1.

2. The inclusion Sk ⊂ Gk holds for all k ∈ N, where

Gk = {(a, b) ∈ ]0,+∞[2, (a/k, b/k) ∈ G1}.(9)

The set G1 is defined in Theorem 1. Thus we obtain

S ⊂
+∞
⋃

k=1

Gk.

3. For the pair (a, b) ∈ Sk, the corresponding 2π-periodic nontrivial solutions
of the boundary value problem (5) have exactly 2k semi-waves in an interval
of the length 2π. This solution is unique if the translation in the direction of
the x-axes and positive multiples are not considered.

Then Fuč́ık’s spectrum for the periodic boundary value problem (5) is the set

A−1 = {(a4, b4) ∈ R2 | (a, b) ∈ S} ∪ {Sx
0 , S

y
0},

where Sx
0 (or Sy

0 , respectively) is just x-axes (y-axes, respectively). The corre-
sponding nontrivial solutions of the boundary value problems (5) for the pairs
(a, b) ∈ Sx

0 (Sy
0 ) are arbitrary constants c < 0 (c > 0).
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2.1.2. The description of the algorithm The algorithm how to generate
the points of Fuč́ık’s spectrum A−1 with some specific accuracy is in details de-
scribed in [4]. It is obvious from the previous considerations that if we are able to
generate the points of the set S1 that determine the first branch of Fuč́ık’s spec-

trum, then we are able to generate automatically the other branches of Fuč́ık’s

spectrum. It can be shown (see [3]) that the set S1 is described by the system of
two nonlinear equations

af(ar) + bf(b(π − r)) = 0,

a2g(ar) − b2g(b(π − r)) = 0.(10)

The principle of the algorithm is such that for the chosen fixed r ∈ (π/2, π)
we compute the parameters a and b of the system (10) numerically with some
accuracy. This provides the approximation of one pair (a, b) ∈ S1. For the complete
description of the algorithm see thesis [4].

2.2. The Navier boundary value problem

Let us consider the boundary value problem of the form
{

uIV(x) = λu(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0.
(11)

The eigenvalues of this boundary value problem (11) and the corresponding eigen-
functions are

λk = k4, vk(x) = sinkx, k = 1, 2, 3, . . . .

2.2.1. Fuč́ık’s spectrum Let us consider the boundary value problem
{

uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0.
(12)

Fuč́ık’s spectrum of this boundary value problem (12) is the set

A−1 = {(a4, b4) ∈ R2 | (a, b) ∈ S},
where S is the system of continuous curves S = {S+

i , S
−

i , i ∈ N} with the following
properties (see [3]):

1. Let (a, b) ∈ S+
i (S−

i ), then the solution u of the boundary value problem (12)
is the solution of the initial value problem

{

uIV(x) = a4u+(x) − b4u−(x), x ∈ [0,+∞[,

u(0) = 0, u′(0) = α, u′′(0) = 0, u′′′(0) = t,
(13)

with α > 0 (α < 0) and with some t ∈ R. This solution u is uniquely de-
termined by the choice of the constant α and has exactly (i + 1) zeros in
the interval [0, π].
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Fig. 3. Fuč́ık’s spectrum for the Navier BVP (12).

2. The curves S+
i and S−

i are mutually symmetric with respect to the straight
line a = b. If i is even, then S+

i = S−

i .
3. For all i ∈ N, (S+

i ∪ S−

i ) ∩ (S+
i+1 ∪ S−

i+1) = ∅ holds.

2.2.2. The description of the algorithm We will try to explain the main idea
of the algorithm for generating Fuč́ık’s spectrum for the easiest case. This means,
we consider the second branch S+

2 that merges in the curve S−

2 , which follows
from the properties of the spectrum that we mentioned in the previous Section
2.2.1. If we restrict our attention only to the second branch S+

2 , then we know
that the corresponding solutions u of the boundary value problem (12) will have
exactly 3 zeros in the interval [0, π]. Further, we know that the curve S+

2 is passing
through the point ( 4

√
λ2,

4
√
λ2) = (2, 2) and the corresponding nontrivial solution

of the boundary value problem (12) is then v2(x) = sin 2x. Due to the symmetry
of Fuč́ık’s spectrum with respect to the straight line a = b, we can concentrate
hereafter only on the case a ≥ b.

We will try to find the inspiration in the classical shooting methods, which
are based on a transformation of a boundary value problem into a sequence of
some initial value problems. Our attention will be therefore concentrated on the
initial value problem (13). There are four parameters a, b, α and t in the initial
value problem (13). We will try to determine these parameters in such a way
that the corresponding solution u of the problem (13) will be the solution of the
boundary value problem (12) and in the interval [0, π] will have exactly 3 zeros.
If u is the solution of the boundary value problem (12), then an arbitrary positive
multiple of u is also its solution. This fact can be expressed just by the parameter
α. Let us therefore choose an arbitrary, but fixed value of the parameter α such
that α > 0, because we are studying the curve S+

2 . Our goal is now to find
the corresponding values of the parameters b and t (for the chosen parameter
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Fig. 4. Fuč́ık’s spectrum for the Dirichlet BVP (17).

a) such that the point (a, b) will be the point of the curve S+
2 . For more details

see the second part of the thesis [4], where the complete form of the algorithm can
be also found.

2.3. The Dirichlet boundary value problem

Let us consider the eigenvalue problem for the Dirichlet boundary value problem
of the form

{

uIV(x) = λu(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0.
(14)

The eigenvalues λk of this boundary value problem (14) are given by

λk = ϕ4
k, where cosϕkπ coshϕkπ = 1, ϕk 6= 0, k = 1, 2, 3, . . .(15)

and the corresponding eigenfunctions are

vk(x) = [coshϕkπ − cosϕkπ][sinhϕkx− sinϕkx] −
−[sinhϕkπ − sinϕkπ][coshϕkx− cosϕkx].(16)

2.3.1. Fuč́ık’s spectrum Let us consider the boundary value problem
{

uIV(x) = a4u+(x) − b4u−(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0.
(17)

Fuč́ık’s spectrum of the Dirichlet boundary value problem (17) has similar proper-
ties as Fuč́ık’s spectrum of the previous Navier boundary value problem (12). This
can be also observed if we compare the Figures 3 and 4. The algorithm for gener-
ating Fuč́ık’s spectrum of the Dirichlet boundary value problem (17) is analogous
to the algorithm for the previous problem (12) (see [4]).
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2.4. The implementation of the algorithms

The algorithms stated in this paper can be easily modified for the problems with
other boundary conditions. In general, it is possible to say that for realization of
the algorithms for generating Fuč́ık’s spectrum it is necessary to perform the indi-
vidual steps of the computations with relatively high accuracy; the higher accuracy,
the higher number of the branches of Fuč́ık’s spectrum we would like to generate.

The mentioned algorithms for generating Fuč́ık’s spectrum of our three bound-
ary value problems (the periodic boundary value problem (5), the Navier boundary
value problem (12) and the Dirichlet boundary value problem (17)) were imple-
mented in Fortran 77 on the parallel computer cluster Lyra.

Due to the required higher accuracy, for the computations generating the higher
branches of Fuč́ık’s spectrum, the mentioned algorithms were implemented also in
the system Mathematica 3.0. The algorithms were included into the system of
procedures for modelling of bifurcations (MBx). For more results of our numerical
experiments visit the internet site

http://cam.zcu.cz/members/necesal/index.cz.shtml.

3. Existence results

Let us consider the boundary value problems for the fourth order nonlinear differ-
ential equation

uIV = f(x, u)

together with three different boundary conditions (the Dirichlet, the periodic
and the Navier boundary conditions). In this section, we discuss the existence re-
sults for these boundary value problems at resonance. Our results rely on the Lan-
desman–Lazer type conditions.

3.1. The Dirichlet boundary value problem

Let us consider the boundary value problem of the form

{

uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, π],

u(0) = u′(0) = u(π) = u′(π) = 0,
(18)

where g : [0, π] × R → R is the Carathéodory function, the right hand side f ∈
L1(0, π), λm is the eigenvalue of the boundary value problem (14) (see the relation
(15)).

Henceforth we will assume that the function g = g(x, s) satisfies the follow-
ing growth condition. Let us suppose that there exist the function p ∈ L1(0, π)
and the constant C > 0 such that the inequality

|g(x, s)| ≤ p(x) + C|s|(19)
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Fig. 5. The illustration of the conditions (19), (20) and (21) for fixed x0 ∈ [0, π].

holds for all s ∈ R and for a. a. x ∈ [0, π]. Moreover, let us suppose that there
exist the functions k, l ∈ L1(0, π) and the constants K,L ∈ R, K < 0 < L, such
that

g(x, s) ≥ k(x) for all s ≤ K and for a. a. x ∈ [0, π],(20)

g(x, s) ≤ l(x) for all s ≥ L and for a. a. x ∈ [0, π].(21)

Let us denote H = W2,2
0 (0, π) the Sobolev space on the interval ]0, π[ with

the inner product and the norm

(u, v) =

∫ π

0

u′′(x)v′′(x) dx and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (18), if u ∈ H
and the integral identity
∫ π

0

u′′(x)v′′(x) dx− λm

∫ π

0

u(x)v(x) dx +

∫ π

0

g(x, u(x))v(x) dx =

∫ π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 2 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies all assumptions stated above and, moreover,

lim
s→±∞

g(x, s)

s
= 0(22)
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uniformly for a. a. x ∈ [0, π]. Denote

g+∞(x) = lim sup
s→+∞

g(x, s), g−∞(x) = lim inf
s→−∞

g(x, s).

Then the boundary value problem (18) has at least one weak solution provided the

Landesman–Lazer type condition

∫ π

0

g+∞(x)v+
m(x) dx−

∫ π

0

g−∞(x)v−m(x) dx <

∫ π

0

f(x)vm(x) dx <

<

∫ π

0

g−∞(x)v+
m(x) dx−

∫ π

0

g+∞(x)v−m(x) dx

holds.

Proof. The proof is based on the Leray-Schauder degree theory (see [4]).

3.2. The Navier boundary value problem

Let us consider the boundary value problem

{

uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, π],

u(0) = u′′(0) = u(π) = u′′(π) = 0,
(23)

where g : [0, π] × R → R is the Carathéodory function satisfying the assumptions
from Section 3.1, the right hand side f ∈ L1(0, π), λm = m4 for m ∈ N is the
eigenvalue of the boundary value problem (11).

Let us denote H = {u ∈ W2,2(0, π); u(0) = u(π) = 0} = W2,2(0, π)∩W1,2
0 (0, π)

the space with the inner product and the norm

(u, v) =

∫ π

0

[u′′(x)v′′(x) + u(x)v(x)] dx, and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (23), if u ∈ H
and the integral identity
∫ π

0

u′′(x)v′′(x) dx− λm

∫ π

0

u(x)v(x) dx +

∫ π

0

g(x, u(x))v(x) dx =

∫ π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 3 (Sublinear growth). Let us suppose that the Carathéodory func-

tion g = g(x, s) satisfies (19) – (22). Then the boundary value problem (23) has

at least one weak solution provided the Landesman–Lazer type condition

∫ π

0

g+∞(x)(sinmx)+ dx−
∫ π

0

g−∞(x)(sinmx)− dx <

∫ π

0

f(x) sinmxdx <
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<

∫ π

0

g−∞(x)(sinmx)+ dx−
∫ π

0

g+∞(x)(sinmx)− dx

holds.

Proof. The proof is analogous to the proof of Theorem 2 (see [4]).

3.3. The periodic boundary value problem

In this section, we will consider the periodic boundary value problem

{

uIV(x) − λmu(x) + g(x, u(x)) = f(x), x ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π),
(24)

where g : [0, 2π] × R → R is the Carathéodory function, the right hand side
f ∈ L1(0, 2π), λm = m4 for m ∈ N is the eigenvalue of the boundary value
problem (2). Moreover, let us suppose that the function g = g(x, s) satisfies all
assumptions for the function g in the Section 3.1 with [0, π] replaced by [0, 2π].
In particular, this means that the growth condition (19) and the conditions (20),
(21) hold with the replacement of the interval [0, π] by [0, 2π].

Let us denote H = {u ∈ W2,2(0, 2π); u(0) = u(2π), u′(0) = u′(2π)} the space
with the inner product and the norm

(u, v) =

∫ 2π

0

[u′′(x)v′′(x) + u(x)v(x)] dx and ‖u‖ =
√

(u, u), respectively.

We say that u is the weak solution of the boundary value problem (24), if u ∈ H
and the integral identity

∫ 2π

0

u′′(x)v′′(x) dx− λm

∫ 2π

0

u(x)v(x) dx +

∫ 2π

0

g(x, u(x))v(x) dx =

∫ 2π

0

f(x)v(x) dx

holds for all v ∈ H.

Theorem 4 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies all assumptions stated above and, moreover, the growth condition (22)
holds uniformly for a. a. x ∈ [0, 2π]. Then the boundary value problem (24) has at

least one weak solution provided the Landesman–Lazer type condition

∫

v>0

g+∞(x)v(x) dx +

∫

v<0

g−∞(x)v(x) dx <

∫ 2π

0

f(x)v(x) dx

holds for all v ∈ Span{cosmx, sinmx} \ {0}.

Proof. The proof is analogous to the proof of Theorem 2 (see [4]).
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3.4. The reverse growth of the nonlinearity

Let us suppose that in the case of the Dirichlet boundary value problem (18)
the function g = g(x, s) satisfies

g(x, s) ≤ k(x) for all s ≤ K and for a. a. x ∈ [0, π],(25)

g(x, s) ≥ l(x) for all s ≥ L and for a. a. x ∈ [0, π],(26)

instead of the conditions (20) and (21). The meaning of k, K, l and L is the same
as in the Section 3.1. Note that the hypotheses (25), (26) are in a certain sense
dual to the assumptions (20), (21). In this case we can formulate the dual version

of Theorem 2.

Theorem 5 (Sublinear growth). Let us suppose that the function g = g(x, s)
satisfies (19), (22) and the conditions (25), (26). Then the boundary value problem

(18) has at least one weak solution provided the Landesman–Lazer type condition

∫ π

0

g−∞(x)v+
m(x) dx−

∫ π

0

g+∞(x)v−m(x) dx <

∫ π

0

f(x)vm(x) dx <

<

∫ π

0

g+∞(x)v+
m(x) dx−

∫ π

0

g−∞(x)v−m(x) dx

holds, where

g−∞(x) = lim sup
s→−∞

g(x, s), g+∞(x) = lim inf
s→+∞

g(x, s).

Proof. The proof follows the lines of that of Theorem 2 (see [4]).

The main difference between Theorem 2 and its dual version Theorem 5 is
in different form of the Landesman-Lazer type condition. For the dual formulations
in the cases of our two remaining boundary value problems see thesis [4].
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