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The aim of the paper is to investigate the relation between a linear homoge-
neous differential equation and its nonhomogeneous variant concerning the nonos-
cillatory property. More precisely, we formulate the problem as follows.

Problem. If the homogeneous linear differential equation is nonoscillatory and
f(x) is a continuous one-signed function (i. e. f(x) ≥ 0 or f(x) ≤ 0) which is not
identically zero for large x, we ask which other properties has the homogeneous
differential equation to have so that also the nonhomogeneous differential equation
will have the nonoscillatory property.

For the simplicity we will consider the selfadjoint differential equation

y(4) + p(x)y = 0(1)

and

z(4) + p(x)y = f(x)(2)
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We assume that p(x) ∈ C([a,∞)) is nonnegative function defined on J = [a,∞)
and f(x) ∈ C([a,∞)) is a one-signed function on J not identically zero for large
x.

It follows from the assumptions about p(x) that either all solutions of (1) are
oscillatory or all are nonoscillatory [1].

Definition 1. A solution of (1) or (2) is oscillatory if it has an upper unbounded
set of zeros. A solution is nonoscillatory if it is not oscillatory.

Definition 2. Equation (1) or (2) is oscillatory if it has at least one oscillatory
solution. Otherwise the equation is nonoscillatory.

Definition 3. Equation (1) is said to be disconjugate (on an interval I) if no
nontrivial solution of (1) has more than 3 zeros (on I).

The above problem was solved for the linear differential equations of the second
order in paper [2].

Theorem 1. ([2]). Let the equation

y′′ + p(x)y = 0

be a nonoscillatory equation and let f(x) be a one-signed function not identically
zero for large x. Then the equation

z′′ + p(x)z = f(x)

is also nonoscillatory.

For the equation of higher order our problem was solved in the paper [3], where
the condition for the nonoscillatory behaviour of the homogeneous differential
equation was substituted by the condition of disconjugacy of the homogeneous
differential equation. It has to be mentioned that the disconjugacy doesn’t follow
from the nonoscillatory property.

Our problem was discussed in the paper [4] for the linear differential equations
of the n-th order, where the condition of disconjugacy is assumed for the so-called
reduced operator L̂n−1 associated to the operator Ln.

Definition 4. Equation

Lny = y(n) + a1y
n−1 + ... + any = 0,(3)

where ai ∈ C([a,∞)), i = 1, 2, ..., n, is said to be disconjugate (on an interval I),
if no nontrivial solution of (3) has more than n − 1 zeros (on I).

Assume that the equation (3) is nonoscillatory and that Φ(x) is a nonoscillatory
solution of (3). If we set y = Φz, then for sufficiently large x we get

Lny = zLnΦ + Φ

[

z(n) +
n−1
∑

i=1

âi(x)z(n−i)

]

= zLnΦ + ΦL̂n−1z
′,
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where âi(x) depend on Φ(x). Operator L̂n−1 is called the reduced operator for Ln

associated with Φ.
Our problem is partially solved in the paper [4].

Lemma 1. ([4]). Let the equation (3) be nonoscillatory and let for solution Φ of
(3) be L̂n−1z = 0 disconjugate for large x. Let f(x) be a one-signed continuous
function on [a,∞) not identically zero for large x. Then the equation

Lny = f(x)(4)

is also nonscillatory.

In the following we will consider our problem for the equations (1) and (2).
Instead of the disconjugacy we will use the condition of selfadjointness of (1) and
the property that each solution y(x) of (1) can have at most one double zero.

We know that all solutions of (1) are of the same oscillatory character. We will
assume that all solutions of (1) are nonoscillatory.

Let be y1(x), y2(x), y3(x), y4(x) nonoscillatory solutions of (1) on J given by
the initial conditions in x0 ∈ [a,∞)

y
(j)
i (x0) =

{

1 , for j = i − 1
0 , for j 6= i − 1

, i = 1, 2, 3, 4; j = 0, 1, 2, 3.(5)

These solutions form a fundamental system. Their wronskian is

W (y1, y2, y3, y4)(x) = 1.(6)

From the fact that (1) is selfadjoint it follows ([5], Chap. II,5) that the wronskians

W1 = W (y2, y3, y4)(x), W2 = W (y1, y3, y4)(x)
W3 = W (y1, y2, y4)(x), W4 = W (y1, y2, y3)(x)

(7)

are solutions of (1) on J . It is easy to see that

W
(j)
k (x0) = 0,

W k−1
k (x0) = 1.

}

k = 1, 2, 3, 4, j 6= k − 1,(8)

Thus

W1 = y4(x),W2 = y3(x),W3 = y2(x),W4 = y1(x).(9)

Using the method of variation of constants we get for the general solution z(x) of
(2) the expression

z(x) = c1y1(x) + c2y2(x) + c3y3(x) + c4y(x) +

∫ x

x0

A(t, x)f(t)dt,(10)
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where

A(t, x) =

∣

∣

∣

∣

∣

∣

∣

∣

y1(t) , y2(t) , y3(t) , y4(t)
y′

1(t) , y′

2(t) , y′

3(t) , y′

4(t)
y′′

1 (t), y′′

2 (t), y′′

3 (t), y′′

4 (t)
y1(x), y2(x), y3(x), y4(x)

∣

∣

∣

∣

∣

∣

∣

∣

, x0 ≤ t ≤ x.(11)

Respecting (7) and (8) we get

A(t, x) = −y1(x)y4(t) + y2(x)y3(t) − y3(x)y2(t) + y4(x)y1(t), x0 ≤ t ≤ x.(12)

It is evident that A(t, x) as the function of t is a solution of (1). It is easy to see
that t = x is a triple zero of the solution A(t, x). Using the expression (12) we get
from (10)

z(x) =
4

∑

i=1

yi(x)

[

ci + (−1)i

∫ x

x0

y5−i(t)f(t)dt

]

.(13)

We remark that evidently
∫ x

x0

y5−i(t)f(t)dt, i = 1, 2, 3, 4, is a monotone function
in a neighbourhood of +∞.

Lemma 2. Let p(x) be continuous and nonnegative on [a,∞). Let all solutions of
the equation (1) be nonoscillatory. Then not all solutions of the equation (1) are
bounded.

Proof. Let be all solutions of the equation (1) nonoscillatory and bounded. Thus,
the solutions y1(x), y2(x), y3(x), y4(x) satisfying (5) are nonoscillatory and boun-

ded on [x0,∞). From this it folows that limx→∞ y
(j)
i = 0, i = 1, 2, 3, 4, j = 1, 2, 3

and limx→∞ yi(x) is finite. Therefore, limx→∞ W (y1, y2, y3, y4)(x) = 0, which con-
tradicts the fact that W (y1, y2, y3, y4)(x) = 1 for all x ∈ [a,∞).

Lemma 3. Let be p(x) ∈ C([a,∞)) nonnegative and not identically zero on some
subinterval of [a,∞). Then every nontrivial solution y(x) of (1) has at most one
double (triple) zero point on [a,∞).

Proof. Multiplying (1) by y(x) we get y(4)y + p(x)y2 = 0 or after modification

(y′′′y − y′y′′)′ = −y′′2 − p(x)y2 ≤ 0. It means that the function F (y(x)) =
y′′′(x)y(x) − y′(x)y′′(x) is a nonincreasing one. From this the assertion of Lemma
3 follows.

Lemma 4. Let yi(x), i = 1, 2, 3, 4 be the nonoscillatory solutions of (1) satisfying
(5). Then there exists x̄ ∈ [a,∞) such that for x ≥ x̄ yi(x) 6= 0, i = 1, 2, 3, 4,

W (y4, y3, y2, y1)(x) 6= 0, W (y4, y3, y2)(x) 6= 0,

W (y4, y3)(x) 6= 0, W (y4)(x) = y4 6= 0.
(14)



SOME REMARKS ABOUT THE NONOSCILLATORY SOLUTIONS 621

Proof. It follows from the assumption of nonoscillatority of yi(x), i = 1, 2, 3, 4
that there exists x̄ > x0 such that yi(x) 6= 0 for x ≥ x̄ and i = 1, 2, 3, 4.
Moreover, we know that W (y4, y3, y2, y1)(x) = const 6= 0 for all x ∈ [a,∞)
and W (y4, y3, y2)(x) = −y4(x) 6= 0 for x ≥ x̄. Consider the solution u(x) =
c1y4(x) + c2y3(x). Evidently, u(x0) = u′(x0) = 0, u′′(x0) = c2. Thus u(x) has no
double zero for x > x0 and therefore there doesn’t exist t > x0 such that

u(t) = c1y4(t) + c2y3(t) = 0

u′(t) = c1y
′

4(t) + c2y
′

3(t) = 0.

From this we have that W (y4, y3)(t) 6= 0 for all t > x0 and therefore also for
t = x ≥ x̄. Evidently, W (y4)(x) = y4(x) 6= 0 for x ≥ x̄. This ends the proof of
Lemma 4.

Lemma 5. Let be p(x), f(x) ∈ C([a,∞)), p(x) nonnegative and not identically
zero on some subinterval of [a,∞) and f(x) a one-signed function not identically
zero for large x. Then the equation (2) allows the Frobenius factorization ([6],
Chap. IV, §8, IX.)

a4(a3(a2(a1(a0z)′)′)′)′ = f(x), x ≥ x̄,(15)

where

aj(x) =
W 2

j (x)

Wj−1(x)Wj+1(x)
, j = 0, 1, 2, 3, 4,(16)

W0(x) = W−1(x) = W5(x) = 1,

Wj(x) = W (y4, ..., y5−j)(x), j = 1, 2, 3, 4.(17)

Proof. From Lemma 4 we have that for x ≥ x̄

W1(x) = W (y4)(x) = y4(x) 6= 0, W2(x) = W (y4, y3)(x) 6= 0,

W3(x) = W (y4, y3, y2)(x) = −y4(x) 6= 0, W (y4, y3, y2, y1)(x) = 1.

Thus

a0(x) =
1

y4(x)
6= 0, a1(x) =

y2
4(x)

W (y4, y3)(x)
6= 0, a2(x) =

W 2(y4, y3)(x)

y2
4(x)

6= 0,

a3(x) =
y2
4(x)

W (y4, y3)(x)
6= 0, a4(x) =

1

y4(x)
6= 0,
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and (2) or (15) will have the form

1

y4(x)





y2
4(x)

W (y4, y3)(x)

[

W 2(y4, y3)(x)

y2
4(x)

[

y2
4(x)

W (y4, y3)(x)

[

z(x)

y4(x)

]

′

]

′
]′





′

= f(x).

(18)

Theorem 2. Let p(x), f(x) ∈ C([a,∞)), p(x) nonnegative and not identically
zero on some subinterval of [a,∞) and f(x) a one-signed function in a neighbour-
hood of +∞ not identically zero for large x. Let be equation (1) nonoscillatory.
Then the equation (2) is also nonoscilatory.

Proof. Under the given conditions on p(x) and f(x) the equation (2) can be
transformed to the equivalent equation (15) and also (18), where the functions
ai(x) 6= 0, i = 0, 1, 2, 3, 4 on some neighbourhood of +∞. The nonoscillatory
character of solutions of (15) and (18) is evident.
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