
Archivum Mathematicum

R. Nasr-Isfahani
Inner amenability of Lau algebras

Archivum Mathematicum, Vol. 37 (2001), No. 1, 45--55

Persistent URL: http://dml.cz/dmlcz/107785

Terms of use:
© Masaryk University, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107785
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)

Tomus 37 (2001), 45 – 55

INNER AMENABILITY OF LAU ALGEBRAS

R. NASR-ISFAHANI

Abstract. A concept of amenability for an arbitrary Lau algebra called
inner amenability is introduced and studied. The inner amenability of a dis-

crete semigroup is characterized by the inner amenability of its convolution
semigroup algebra. Also, inner amenable Lau algebras are characterized by

several equivalent statements which are similar analogues of properties char-
acterizing left amenable Lau algebras.

1. Introduction and Preliminaries

A complex Banach algebra A is called Lau algebra if it is the (unique) predual
of a W ∗-algebra M and the identity element u of M is a multiplicative linear
functional on A. The subject of this class of Banach algebras originated with a
paper published in 1983 by Lau [10] in which he referred to them as “F-algebras”.
Later on, in his useful monograph Pier [24] introduced the name “Lau algebra”.

The wide range of Lau algebras includes the Fourier algebra A(G), the Fourier-
Stieltjes algebra B(G), the group algebra L1(G) of a locally compact group G, and
the measure algebra of a locally compact semigroup or hypergroup. In particular,
it includes the semigroup algebra `1(S) of a discrete semigroup S.

As pointed out in Lau [10], M need not be unique. Nevertheless, we shall
identify the continuous dual A∗ of A withM if there is no confusion. The second
dual A∗∗ of A equipped with the first Arens multiplication� is a Lau algebra [10,
Prop. 3.2], where � is defined by the equations

〈F �H, f〉 = 〈F,Hf〉, 〈Hf, a〉 = 〈H, fa〉, 〈fa, b〉 = 〈f, ab〉
for all F,H ∈ A∗∗, f ∈ A∗, and a, b ∈ A. Let P (A) be the set of all elements a in
A that induce positive functionals on the W∗-algebra A∗, and let P1(A) be the set
of all elements a in P (A) such that 〈u, a〉 = 1; note that P (A) = {a ∈ A : ‖a‖ =
〈u, a〉}; see [25], 1.5.1 and 1.5.2.

An element M of P1(A∗∗) is said to be a topological left (resp. two-sided) in-
variant mean if a �M = M (resp. a�M = M � a = M ) for all a ∈ P1(A). The
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Lau algebra A is called left (resp. two-sided) amenable if there exists a topological
left (resp. two-sided) invariant mean on A∗.

The notion of left amenability of Lau algebras was introduced by Lau in [10]. In
the same paper he obtained several characterizations of left amenable Lau algebras.
See also Ghahramani and Lau [8], Lau [11], Lau and Wong [14], and the author
[19].

The purpose of this paper is to introduce and to study a concept of amenability
for Lau algebras. The idea behind our concept of amenability is quite simple.
Let us first recall that a discrete semigroup S is called inner amenable if there
is an element M of P1(`∞(S)∗) such that 〈M,xf〉 = 〈M, fx〉 for all x ∈ S and
f ∈ `∞(S), where (xf)(y) = f(yx) and (fx)(y) = f(xy) for all y ∈ S. Such an M
is called an inner invariant mean on `∞(S). Here `∞(S) denotes the W∗-algebra
of all bounded complex-valued functions on S which can be realized as the dual
of `1(S).

The study of inner amenability is initiated by Effros [7] and pursued by Akeman
[1], H. Choda [4], M. Choda [5, 6], Kaniuth and Markfort [9], Paschke [20], Pier
[22], and Watatani [27] for discrete groups and recently by Ling [15] for discrete
semigroups.

Observe that an element M of P1(`∞(S)∗) is inner invariant if and only if
〈M,af〉 = 〈M, fa〉 for all a ∈ `1(S) and f ∈ `∞(S); this is because fa =∑
x∈S a(x) fx and af =

∑
x∈S a(x) xf .

We say that A is inner amenable if there exists M in P1(A∗∗) such that
〈M, fa〉 = 〈M,af〉 for all a ∈ P1(A) and f ∈ A∗. We call such an M a topo-
logical inner invariant mean (=TIIM) on A∗ and denote by TIIM(A∗) the set of
topological inner invariant means on A∗.

Thus the inner amenability of S is equivalent to the inner amenability of `1(S).
In fact, TIIM(`∞(S)) is exactly the set of all inner invariant mean on `∞(S).

Note that an elementM of P1(A∗∗) is a TIIM on A∗ if and only if a�M = M�a
for all a ∈ P1(A) (or equivalently a ∈ A), and clearly, any topological two-sided
invariant mean on A∗ is a TIIM, and therefore two-sided amenable Lau algebras
are inner amenable.

We will show that many results concerning left amenability of Lau algebras have
similar analogues for inner amenability. We will also give a fixed point property
characterizing inner amenable Lau algebras. Finally, we study the relation between
inner amenability of two Lau algebras with inner amenability of their direct sum.

2. Elementary Results

Throughout, A denotes a Lau algebra and u denotes the identity element of the
dual W ∗-algebra A∗.

Proposition 2.1. A is inner amenable if and only if there is a nonzero self-
adjoint element F of A∗∗ such that a � F = F � a and ‖a � F‖ = ‖F‖ for all
a ∈ P1(A).
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Proof. The “only if” part is trivial. To prove the converse, we suppose that F is
a nonzero self-adjoint element of A∗∗ with a�F = F �a such that ‖a�F‖ = ‖F‖
for all a ∈ P1(A). Then there exist unique elements F+ and F− of P (A∗∗) such
that F = F+ − F− and ‖F‖ = ‖F+‖ + ‖F−‖ for a ∈ P1(A) [25, 1.14.3]. Thus
a� F+ and a� F− are in P (A∗∗), and

‖a� F‖ = ‖F+‖+ ‖F−‖ = 〈F+, u〉+ 〈F−, u〉
= 〈a � F+, u〉+ 〈a � F−, u〉 = ‖a� F+‖+ ‖a� F−‖ .

Similarly, ‖a� F‖ = ‖F + � a‖+ ‖F− � a‖. These equalities together with

a � F = a� F+ − a � F− = F+ � a− F− � a
imply that a � F+ = F+ � a and a � F− = F− � a [25, 1.14.3]. So, if F + is
nonzero (say), then ‖F+‖−1F+ lies in TIIM(A∗).

As a consequence of the proof of the above proposition, we have

Corollary 2.2. A∗ has a TIIM in P1(A) if and only if there is a nonzero self-
adjoint element b of A such that ab = ba and ‖ab‖ = ‖b‖ for all a ∈ P1(A).

Observe that for H fixed in A∗∗, the mapping F 7→ F � H is weak∗-weak∗

continuous on A∗∗. For F fixed in A∗∗, the mapping H 7→ F �H is in general not
weak∗-weak∗ continuous on A∗∗ unless F is in A. The topological center Z(A∗∗)
of A∗∗ is defined as the set of all F ∈ A∗∗ such that the mapping H 7→ F �H is
weak∗-weak∗ continuous on A∗∗.

Proposition 2.3. The following statements hold:
(a) Any M ∈ TIIM(A∗∗∗) restricted to A∗ is a TIIM on A∗;
(b) TIIM(A∗) ∩ Z(A∗∗) ⊆ TIIM(A∗∗∗).

Proof. (a) is clear. To prove (b), suppose that M ∈ TIIM(A∗) ∩ Z(A∗∗). Since
P1(A) is weak∗ dense in P1(A∗∗) [11, Lemma 2.1], for any N ∈ P1(A∗∗), there
exists a net (aγ) in P1(A) with weak∗ limit N , and therefore

N �M = weak∗ − lim
γ

aγ �M

= weak∗ − lim
γ

M � aγ = M �N

by the definition of Z(A∗∗). That is M ∈ TIIM(A∗∗∗).
Recall that an element E of A∗∗ is called mixed identity if a� E = E � a = a

for all a ∈ A. It is easy to see that an element E of A∗∗ is a mixed identity if
and only if it is a weak∗ cluster point of a bounded approximate identity in A
[3, p. 146]. Furthermore, since we endowed A∗∗ with the first Arens product �,
any mixed identity is a right identity of A∗∗ but not a left identity in general. It
follows from the following generalization of [8, Prop. 2.3] that any mixed identity
with norm one of A∗∗ is in TIIM(A∗).
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Proposition 2.4. Suppose that A∗∗ has a right identity E. Then the following
statements are equivalent:

(a) | E | is a right identity;
(b) ‖E‖ = 1;
(c) E ∈ P (A∗∗);

here | E | denotes the absolute value of E regarded as an element in the predual of
the W ∗-algebra A∗∗∗ [26, p. 143].

Proof. Fix a ∈ P1(A), and use the multiplicativity of u on A∗∗ to conclude that

〈E, u〉 = 〈a, u〉〈E, u〉 = 〈a �E, u〉 = 〈a, u〉 = 1.

Now the result follows immediately.

When A∗∗ has a mixed identity with norm one, we say that A is strictly inner
amenable if there is a TIIM on A∗ that is not a mixed identity.

Let us recall that a locally compact group G is amenable if there is a left
invariant mean on the dual W∗-algebras L∞(G) of L1(G); that is an element
M of P1(L∞(G)∗) such that 〈M, fx〉 = 〈M, f〉 for all f ∈ L∞(G) and x ∈ G.
Examples of amenable locally compact groups include all solvable groups, abelian
groups and all compact groups; see Pier [23] for details.

Example 2.5. (a) If A∗∗ has a mixed identity E with ‖E‖ = 1, then E is a
topological left invariant mean on A∗ if and only if A is one dimensional; it follows
that if A is two-sided amenable and has dimension more than one, then A is
strictly inner amenable.

In particular, if G is a non-trivial amenable locally compact group, then L1(G)
is strictly inner amenable; this follows from the fact that G is amenable if and
only if L1(G) is two-sided (or left) amenable [23, Theorem 4.19]. For example, the
group algebra `1(F2) of the free group on two generators F2, is not strictly inner
amenable [7], and hence it is not two-sided amenable (see [23, Prop. 14.1] for a
direct proof of this fact).

(b) Let P be the discrete group of all permutations of N leaving all but a
finite number of elements unchanged. Then P × F2 is a non-amenable discrete
group and has an inner invariant mean M not equal to the Dirac measure at the
identity element of P × F2 [23, Prop. 22.37]. Therefore `1(P × F2) is a strictly
inner amenable Lau algebra that is not left amenable.

Before stating the following consequence of Proposition 2.3, let us recall that A
is called Arens regular if Z(A∗∗) coincides with A∗∗.

Corollary 2.6. Suppose that A is Arens regular. Then
(a) A∗∗ is inner amenable if and only if A is inner amenable.
(b) If A∗∗ has a mixed identity with norm one and is not strictly inner amenable,

then A is not strictly inner amenable.

Note that P1(A) endowed with induced norm topology of A and the product
of A is a topological semigroup. Let Cb(P1(A)) denote the Banach space of all
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bounded, and continuous functions on P1(A) with the supremum norm, and define
the left and right translation operators la and rb on Cb(P1(A)) by (laφ)(b) =
φ(ab) = (rbφ)(a) for all a, b ∈ P1(A) and φ ∈ Cb(P1(A)).

A function φ in Cb(P1(A)) is called additively uniformly continuous on P1(A)
if given ε > 0, there is δ > 0 such that | φ(a) − φ(b) |< ε for all a, b ∈ P1(A)
with ‖a − b‖ < δ. Let Cau(P1(A)) denote the set of all additively uniformly
continuous functions on P1(A). Then Cau(P1(A)) is norm closed, translation
invariant subspace of Cb(P1(A)) containing constants and restrictions of elements
in A∗ to P1(A) [14]. An element m of Cau(P1(A))∗ is called a mean if 〈m, 1〉 =
‖m‖ = 1; we call m inner invariant if, in addition, 〈m, laφ〉 = 〈m, raφ〉 for all
φ ∈ Cau(P1(A)) and a ∈ P1(A).

Now, we can present the main result of this section.

Theorem 2.7. The following statements are equivalent.
(a) A is inner amenable.
(b) There is a net (aγ) in P1(A) such that aγa− aaγ → 0 in the weak topology

of A for all a ∈ P1(A).
(c) There is a net (aγ) in P1(A) such that ‖aγa− aaγ‖ → 0 for all a ∈ P1(A).
(d) There is an inner invariant mean on Cau(P1(A)).

Proof. (a)⇒(b). Let M ∈ TIIM(A∗). Then, since P1(A) is weak∗ dense in
P1(A∗∗), there is a net (aγ) in P1(A) such that aγ →M in the weak∗ topology of
A∗. It follows that aγa − aaγ → 0 in the weak topology of A for all a ∈ P1(A).

(b)⇒(c). We follow Namioka’s idea in [18]. Let Y be the vector space Π{A :
b ∈ P1(A)} and let T : A → Y be the linear map defined by T (a)(b) = ba− ab for
all a ∈ A and b ∈ P1(A). By assumption, the weak closure of T (P1(A)) contains
0. Since Y with the product of the norm topology is a locally convex space and
P1(A) is convex, the closure of T (P1(A)) in this topology contains 0. That is (c)
holds.

(c)⇒(d). Let (aγ) be as in (c). If we define mγ ∈ Cau(P1(A))∗ by 〈mγ , φ〉 =
φ(aγ) for all φ ∈ Cau(P1(A)), then any weak∗ cluster point of (mγ) in Cau(P1(A))∗

is an inner invariant mean.
(d)⇒(a). Let m be an inner invariant mean on Cau(P1(A))∗, and define M ∈

A∗∗ by 〈M, f〉 = 〈m, f |P1(A)〉 for f ∈ A∗, where f |P1(A) denotes the restriction
of f to P1(A). Then M is a TIIM on A∗.

The equivalences (a)⇔(c) and (a)⇔(d) are similar analogues of Theorem 3.5
(a)⇔(b) in [10] and Lemma 2.1 in [14] for left amenability.

Remark 2.8. (a) Let us remark that if A has a bounded approximate iden-
tity (eγ) in P1(A), then (eγ) satisfies the conditions (b) and (c) of the preceding
theorem.

(b) One can see easily that the following equivalent statements characterize
commutative Lau algebras in terms of topological inner invariant means.
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(1) P1(A∗∗) = TIIM(A∗).
(2) P1(A) ⊆ TIIM(A∗).
(3) P1(A) is a commutative semigroup.
(4) Any mean on Cau(P1(A)) is inner invariant.

In particular, any commutative Lau algebra is inner amenable. For example, the
Fourier algebra A(G) and the Fourier-Stieltjes algebra B(G) of a locally compact
group G are always inner amenable.

(c) Let G be a locally compact group. Then any mixed identity E with norm
one in L∞(G)∗ is an extension of δe from Cb(G) to L∞(G), where δe denotes the
Dirac measure at the identity e of G; indeed an argument similar to the first part of
the proof of [16, Theorem 2] shows that 〈E, g〉 = g(e) for each continuous function
g with compact support, and then [16, Lemma 3] implies that 〈E, g〉 = g(e) for all
g ∈ Cb(G). Conversely, it is readily verified that any extension of δe to an element
in P1(L∞(G)∗) is a mixed identity. Consequently, the set of mixed identities with
norm one in L∞(G)∗ are exactly the extensions of δe to elements of P1(L∞(G)∗).

In the case where G is discrete, δe is the only mixed identity with norm one in
`∞(G)∗, and of course δe is an inner invariant mean. However, a mixed identity
with norm one in L∞(G)∗ is not in general an inner invariant mean (i.e. an element
M of P1(L∞(G)∗) such that 〈M,xf〉 = 〈M, fx〉 for all x ∈ G and f ∈ L∞(G)),
although it is a TIIM on L∞(G). Losert and Rindler [16] and Yuan [28] studied
the possibility of the extension of δe to an inner invariant mean on L∞(G). See
also Bekka [2], Lau and Paterson [12, 13], Losert and Rindler [17], and Paterson
[21].

(d) There are many interesting and important relations between left invariant
means and topological left invariant means on L∞(G) of a locally compact group
G. For example, topological left invariant means on L∞(G) are special types of
left invariant means (with additional invariance properties), and left amenability
of L1(G) is equivalent to (left) amenability of G; see Pier [23] for details.

However, (in the non-discrete case) topological inner invariant means on L∞(G)
do not seem to be related to inner invariant means. Furthermore, G need not
be inner amenable whereas L1(G) is always inner amenable. For example, non-
amenable connected locally compact groups are not inner amenable; this is because
that in this case, as shown in Losert and Rindler [17], amenability ofG is equivalent
to inner amenability; i.e. existence of an inner invariant mean on L∞(G).

On the other hand, in the case where G is non-trivial and connected, L1(G)
is strictly inner amenable if G is strictly inner amenable; i.e. there is an inner
invariant mean on L∞(G) that is not a mixed identity in L∞(G)∗. Moreover, in
the case where G is amenable or discrete, L1(G) is strictly inner amenable if and
only if so is G. These observations lead us to ask:

Question. Is strict inner amenability of L1(G) equivalent to strict inner ame-
nability of G?
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3. Fixed Point Characterization of Inner Amenability

Let A be a Lau algebra and X be a left Banach A-module, i.e. a Banach
space X equipped with a bounded bilinear map from A ×X into X, denoted by
(a, x) 7→ a · x (a ∈ A, x ∈ X) such that a · (b · x) = (ab) · x for all a, b ∈ A, and
x ∈ X. Define

〈x∗ · a, x〉 = 〈x∗, a · x〉, and 〈a · x∗∗, x∗〉 = 〈x∗∗, x∗ · a〉

for all a ∈ A, x ∈ X,x∗ ∈ X∗, and x∗∗ ∈ X∗∗. Let B(X∗∗) denote the Banach
space of all bounded operators on X∗∗. By weak∗ operator topology on B(X∗∗),
we shall mean the locally convex topology of B(X∗∗) determined by the family

{T 7→| 〈Tx∗∗, x∗〉 | : x∗∗ ∈ X∗∗, x∗ ∈ X∗}

of seminorms on B(X∗∗). We also denote by P(A, X∗∗) the closure of the set
{Λa : a ∈ P1(A) } in the weak∗ operator topology, where Λa ∈ B(X∗∗) is defined
by Λa(x∗∗) = a · x∗∗ for all x∗∗ ∈ X∗∗.
Proposition 3.1. If A is inner amenable, then for each left Banach A-module
X, there is Λ ∈ P(A, X∗∗) such that ΛΛa = ΛaΛ for all a ∈ P1(A).

Proof. First note that if we identify B(X∗∗) with (X∗∗ ⊗ X∗)∗, then the weak∗

operator topology of B(X∗∗) coincides with the weak∗ topology of (X∗∗ ⊗ X∗)∗.
So P(A, X∗∗) is compact in the weak∗ operator topology. Using Theorem 2.7,
there exists a net (aγ) in P1(A) such that ‖aγa − aaγ‖ → 0 for all a ∈ P1(A).
Hence we may find Λ ∈ P(A, X∗∗) with ‖Λ‖ ≤ 1 and a subnet (aδ) of (aγ) such
that Λaδ → Λ in the weak∗ operator topology. For each a ∈ P1(A), we therefore
have ΛaδΛa → ΛΛa and ΛaΛaδ → ΛaΛ in the weak∗ operator topology. Also

‖ΛaδΛa − ΛaΛaδ‖ ≤ K‖aδa− aaδ‖ → 0,

where K is a constant satisfying ‖b · x‖ ≤ K‖b‖ ‖x‖ for all b ∈ A and x ∈ X.
Consequently, ΛΛa = ΛaΛ.

We are now in a position to give a fixed point property characterizing inner
amenability of certain Lau algebras.

Theorem 3.2. Suppose that A has a bounded right approximate identity. Then
the following are equivalent.

(a) A is inner amenable.
(b) There exists Λ ∈ P(A,A∗∗) such that ΛΛa = ΛaΛ for all a ∈ P1(A).
(c) For each left Banach A-module X, there exists Λ ∈ P(A, X∗∗) such that

ΛΛa = ΛaΛ for all a ∈ P1(A).

Proof. By Proposition 3.1, (a) implies (b). That (b) implies (c) is trivial. Now,
suppose that (c) holds, and choose an element Λ of P(A,A∗∗) such that ΛΛa =
ΛaΛ for all a ∈ P1(A). To prove (a), we follow the proof of [13, Theorem 5.1].
Choose a net (aγ) in P1(A) such that Λaγ → Λ in the weak∗ operator topology of
B(A∗∗), and let M be a weak∗ cluster point of (aγ) in P1(A∗∗). Then ΛF = M�F
for F ∈ A∗∗. Indeed, for each f ∈ A∗,
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〈ΛF, f〉 = lim
δ
〈ΛaδF, f〉 = lim

δ
〈aδ · F, f〉

= lim
δ
〈aδ � F, f〉 = lim

δ
〈aδ, F f〉

= 〈M,Ff〉 = 〈M � F, f〉 ,

where (aδ) is a subnet of (aγ) converging to M in the weak∗ topology.
We show that M is a TIIM on A∗. To observe this, let E be a weak∗ cluster

point of a bounded right approximate identity of A in A∗∗. Then E is a right
identity for A∗∗, and for each a ∈ A, we conclude that

M � a = M � (a�E) = ΛΛaE

= ΛaΛE = a� (M � E) = a�M . 2

Remark 3.3. Since P1(A) is weak∗ dense in P1(A∗∗) [11, Lemma 2.1], the
mapping Φ from P1(A∗∗) into P(A,A∗∗), defined by Φ(N )(F ) = N � F for all
N ∈ P1(A∗∗) and F ∈ A∗∗, is a semigroup homomorphism. The proof of Theorem
3.2 shows that Φ is onto. Also, if A∗∗ has a right identity E, then Φ(M )(E) = M
for all M ∈ P1(A∗∗), and so Φ is a semigroup isomorphism. Furthermore, if A∗∗
has a left identity E, then Φ(E) = IA∗∗, the identity operator on A∗∗, and hence
IA∗∗ ∈ P(A,A∗∗).

An application of the above remark gives the following characterization of strict
inner amenability.

Corollary 3.4. Suppose that A∗∗ has an identity with norm one. Then the
following assertions are equivalent.

(a) A is strictly inner amenable.
(b) There is Λ ∈ P(A,A∗∗) such that Λ 6= IA∗∗ and ΛΛa = ΛaΛ for all a ∈

P1(A).

4. Inner Amenability of Direct Sums

Let A1 and A2 be two Lau algebras. Define the direct sum of A1 and A2

denoted by A1 ⊕ A2 to be the complex algebra consisting of all ordered pairs
(a1, a2), a1 ∈ A1, a2 ∈ A2, with coordinatewise addition, scalar multiplication,
and product

(a1, a2)(b1, b2) = (a1b1 + 〈u2, a2〉b1 + 〈u2, b2〉a1, a2b2),

where ui is the identity element of (Ai)∗ (i = 1, 2). Then A1 ⊕ A2 with norm
‖(a1, a2)‖ = ‖a1‖ + ‖a2‖ is a Lau algebra which the linear functional (a1, a2) 7→
〈u1, a1〉 + 〈u2, a2〉 is the identity of (A1 ⊕A2)∗ [10, Prop. 3.6].

Lemma 4.1. The semigroup P1(A1 ⊕ A2) is equal to all (t1a1, t2a2) such that
ai ∈ {0} ∪ P1(Ai), ti ≥ 0 (i = 1, 2) and t1‖a1‖+ t2‖a2‖ = 1.

Proof. Let (b1, b2) ∈ P1(A1 ⊕A2). Then we have

‖b1‖+ ‖b2‖ = 〈u1, b1〉 + 〈u2, b2〉 = 1,
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whence | 〈u1, b1〉 | + | 〈u2, b2〉 |= 1. It follows that 〈ui, bi〉 is a positive real number
for i = 1, 2. This implies that 〈ui, bi〉 = ‖bi‖ (i = 1, 2).

Putting ai = ‖bi‖−1bi and ti = ‖bi‖ if bi 6= 0, and choosing ai in P1(Ai)
arbitrarily and ti = 0 if bi = 0, we see that bi = tiai, ai ∈ P1(Ai) (i = 1, 2), and
t1‖a1‖ + t2‖a2‖ = 1. This proves the forward inclusion. The reverse inclusion is
trivial.

We now give the main result of this section which is a similar analogue of Lau
[10, Prop. 4.5] concerning left amenability.

Proposition 4.2. The set TIIM((A1 ⊕ A2)∗) is equal to all (t1M1, t2M2) in
P1((A1 ⊕ A2)∗∗) such that Mi ∈ {0}∪ TIIM((Ai)∗) and ti ≥ 0 (i = 1, 2). In
particular, A1 ⊕A2 is inner amenable if and only if A1 or A2 is inner amenable.

Proof. First note that the map J from the Lau algebra (A1)∗∗ ⊕ (A2)∗∗ onto the
Lau algebra (A1 ⊕A2)∗∗ defined by

〈J(F1, F2), (f1, f2)〉 = 〈F1, f1〉 + 〈F2, f2〉 (Fi ∈ (Ai)∗∗, fi ∈ (Ai)∗, i = 1, 2)
is a linear isometry and algebra isomorphism [10, Prop. 3.5]. Now, let (a1, a2) ∈
P1(A1⊕A2). If Mi ∈ {0}∪ TIIM((Ai)∗) and ti ≥ 0 (i = 1, 2) with (t1M1, t2M2) ∈
P1((A1 ⊕ A2)∗∗), then

(a1, a2)� (t1M1, t2M2)

=
(
t1(a1 �M1) + 〈u2, a2〉t1M1 + 〈t2M2, u2〉a1, t2(a2 �M2)

)
=
(
t1(M1 � a1) + 〈t2M2, u2〉a1 + 〈u2, a2〉t1M1, t2(M2 � a2)

)
= (t1M1, t2M2)� (a1, a2)(*)

That is (t1M1, t2M2) ∈ TIIM((A1 ⊕A2)∗).
Conversely, if (N1, N2) ∈ TIIM((A1⊕A2)∗), then by Lemma 4.1, we have Ni =

tiMi for some Mi ∈ {0}∪P1((Ai)∗∗) and ti ≥ 0 (i = 1, 2). Thus equalities similar
to (∗) hold for all (a1, a2) ∈ P1(A1)×P1(A2); we therefore have ai�Mi = Mi�ai
whence Mi ∈ TIIM((Ai)∗) (i = 1, 2).

Note that (A1 ⊕ A2)∗∗ has a mixed identity with norm one if and only if A2

has a mixed identity with norm one. Indeed an element (F,E) of (A1 ⊕ A2)∗∗ is
a mixed identity for (A1 ⊕ A2)∗∗ if and only if F = 0 and E is a mixed identity
for A2; this follows from the fact that a net (aγ , eγ) is a bounded approximate
identity for A1 ⊕ A2 if and only if aγ → 0 and (eγ) is a bounded approximate
identity for A2 [10, Prop. 3.4]. So, using the above proposition, we have

Corollary 4.3. Suppose that (A2)∗∗ has a mixed identity with norm one. Then
A1 ⊕ A2 is strictly inner amenable if and only if A1 is inner amenable or A2 is
strictly inner amenable.

Acknowledgment. The author would like to thank very much the referee of this
paper for valuable remarks.



54 R. NASR-ISFAHANI

References

[1] Akeman, C. A., Operator algebras associated with Fuchsian groups, Houston J. Math. 7

(1981), 295–301.

[2] Bekka, M. A., Amenable unitary representations of locally compact groups, Invent. Math.
100 (1990), 383–401.

[3] Bonsall, F. F. and Duncan, J., Complete normed algebras, Springer-Verlag, New York, 1973.

[4] Choda, M. and Choda, M., Fullness, simplicity and inner amenability, Math. Japon. 24
(1979), 235–246.

[5] Choda, M., The factors of inner amenable groups, Math. Japon. 24 (1979), 145–152.

[6] Choda, M., Effect of inner amenability on strong ergodicity, Math. Japon. 28 (1983), 109–

115.

[7] Effros, E. G., Property Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486.

[8] Ghahramani, F. and Lau, A. T., Multipliers and modulus on Banach algebras related to

locally compact groups, J. Funct. Anal. 150 (1997), 478–497.

[9] Kaniuth, E. and Markfort, A., The conjugation representation and inner amenability of
discrete groups, J. Reine Angew. Math. 432 (1992), 23–37.

[10] Lau, A. T., Analysis on a class of Banach algebras with application to harmonic analysis
on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.

[11] Lau, A. T., Uniformly continuous functionals on Banach algebras, Colloq. Math. LI (1987),

195–205.

[12] Lau, A. T. and Paterson, A. L., Operator theoretic characterizations of [IN]-groups and

inner amenability, Proc. Amer. Math. Soc. 102 (1988), 155–169.

[13] Lau, A. T. and Paterson, A. L., Inner amenable locally compact groups, Trans. Amer. Math.
Soc. 325 (1991), 155–169.

[14] Lau, A. T. and Wong, J. C., Invariant subspaces for algebras of linear operators and

amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581–586.

[15] Ling, J. M., Inner amenable semigroups I, J. Math. Soc. Japan 49 (1997), 603–616.

[16] Losert, V. and Rindler, H., Asympototically central functions and invariant extensions of

Dirac measures, Probability Measures on Groups, Proc. Conf., Oberwolfach, 1983.

[17] Losert, V. and Rindler, H., Conjugate invariant means, Colloq. Math. 15 (1987), 221–225.

[18] Namioka, I., Følner condition for amenable semigroups, Math. Scand. 15 (1964), 18–28.

[19] Nasr-Isfahani, R., Factorization in some ideals of Lau algebras with application to semigroup

algebras, Bull. Belg. Math. Soc. 7 (2000), 429–433.

[20] Paschke, W. L., Inner amenability and conjugate operators, Proc. Amer. Math. Soc. 71
(1978), 117–118.

[21] Paterson, A. L., Amenability, Mathematical Surveys and Monographs, No. 29, Amer. Math.
Soc., Providence, R. I., 1988.

[22] Pier, J. P., Quasi-invariance interieure sur les groupes localement compacts, Actualités

Math. (1982), 431–436.

[23] Pier, J. P., Amenable locally compact groups, John Wiley and Sons, New York, 1984.

[24] Pier, J. P., Amenable Banach algebras, Pitman Res. Notes Math. Ser., London, 1988.

[25] Sakai, S., C ∗-algebras and W∗-algebras, Springer-Verlag, Berlin and New York, 1971.

[26] Takesaki, M., Theory of operator algebras, Springer-Verlag, Berlin and New York, 1979.



INNER AMENABILITY OF LAU ALGEBRAS 55

[27] Watatani, Y., The character groups of amenable group C∗-algebras, Math. Japon. 24 (1979),
141–144.

[28] Yuan, C. K., The existence of inner invariant means on L∞(G), J. Math. Anal. Appl. 130
(1988), 514–524.

Department of Mathematics, University of Isfahan
81744 Isfahan, IRAN

E-mail : isfahani@sci.ui.ac.ir


		webmaster@dml.cz
	2012-05-10T14:00:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




