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COINCIDENCE POINTS AND

R–WEAKLY COMMUTING MAPS

NASEER SHAHZAD AND TAYYAB KAMRAN

In this paper we extend the concept of R-weak commutativity to the
setting of single-valued and multivalued mappings. We also establish a coincidence
theorem for pairs of R-weakly commuting single-valued and multivalued mappings
satisfying a contractive type condition.

Recently, Cho, Fisher and Jeong [2] and Rashwan [9] extended independently
the notion of compatibility [4] for multivalued mappings, which is a slight varient
of the notions given by Kaneko and Sessa [6] and Beg and Azam [1]. They also
showed that every weakly commuting pair of multivalued mappings is compatible
but the converse is not true. In this paper we produce some examples which
show that weak commutativity does not imply the existence of sequences of points
satisfying the compatibility condition. For the single-valued case we refer the
reader to Singh (Math. Rev. 89h:54030). We may mention that in such cases, the
condition of compatibility is satisfied in a vacuous sort of way. We also extend the
concept of R-weak commutativity introduced by Pant [8] to the setting of single-
valued and multivalued mappings. Finally, we obtain a coincidence theorem for
pairs of R-weakly commuting single-valued and multivalued mappings satisfying
a contractive type condition. Related (but different) problems were also studied
in [2, 9].

Throughout this paper, X stands for a metric space with the metric d whereas
CB(X) denotes the family of all nonempty closed bounded subsets of X. Let

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)} ,

where A,B ∈ CB(X) and d(x,A) = inf{d(x, y) : y ∈ A}. The function H is a
metric on CB(X) and is called the Hausdorff metric. It is well known that if X is
a complete metric space, then so is the metric space (CB(X), H). The mappings
f : X → X and T : X → CB(X) are said to be (1) weakly commuting [2, 9]
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if for all x ∈ X, fTx ∈ CB(X) and H(fTx, Tfx) ≤ d(fx, Tx); (2) compatible
[2, 9] if lim

n→∞
d(fyn, T fxn) = 0 whenever {xn} and {yn} are sequences in X such

that lim
n→∞

fxn = lim
n→∞

yn = z for some z ∈ X, where yn ∈ Txn for n = 1, 2, . . . ;

(3) R-weakly commuting if for all x ∈ X, fTx ∈ CB(X) and there exists some
positive real number R such that

H(Tfx, fTx) ≤ Rd(fx, Tx) .

In fact, every weakly commuting pair of mappings (f, T ) is compatible but the
converse is not true in general. However, the following examples show that weak
commutativity does not imply the existence of sequences of points satisfying the
compatibility condition.

Example 1. Let X = [1,∞) be endowed with the usual metric d. Let fx = 2x,
Tx = [1, x] for all x ∈ X. Then

H(fTx, Tfx) = 1 ≤ x = d(fx, Tx)

for all x ∈ X. The mappings f and T are thus weakly commuting but there exist
no sequences {xn}, {yn} in X such that the condition of compatibility is satisfied.

Example 2. Let X = [0, 3
5 ] and d the usual metric. Define f : X → X and

T : X → CB(X) by fx = x2, Tx =
[
0, x

4+1
2

]
for all x ∈ X. Then

H(fTx, Tfx) =
(x4 − 1)2

4
=

(x2 + 1)2

2
(x2 − 1)2

2

≤ 1
2

(
9
25

+ 1

)2

d(fx, Tx)

< d(fx, Tx)

for all x ∈ X. This shows that f and T are weakly commuting. But there exist
no sequences {xn} and {yn} in X satisfying the compatibility condition.

Example 3. Let X = [2,∞) be endowed with usual metric d. Let fx = x2,
Tx = [2, 2x− 1] for all x ∈ X. Then

H(fTx, Tfx) = 2d(fx, Tx) .

Hence f and T are R-weakly commuting with R = 2 but they are not weakly
commuting.

For A,B ∈ CB(X), let δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.
Lemma 4 [7]. Let A,B ∈ CB(X) and k > 1. Then for each a ∈ A, there exists
an element b ∈ B such that

d(a, b) ≤ kH(A,B) .
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Theorem 5. Let X be a complete metric space, f , g : X → X continuous
mappings and S, T : X → CB(X) H-continuous mappings such that TX ⊆ fX,
SX ⊆ gX. If the pairs (f, S) and (g, T ) are R-weakly commuting and

(1) Hp(Sx, Ty)

≤ q[αdp(fx, Sx)dp(gy, Ty) + βd2p(fx, gy) + γdp(fx, Ty)dp(gy, Sx)]
αmax{δp(fx, Sx), δp(gy, Ty)} + βdp(fx, gy)

for all x, y ∈ X with

αmax{δ(fx, Sx), δ(gy, Ty)} + βd(fx, gy) 6= 0 ,

0 ≤ q < 1, p ≥ 1 and α, β, γ ≥ 0, (not all zero), then there exists a sequence {xn}
in X such that

(a) for every n, fx2n−1 ∈ Tx2n−2, gx2n ∈ Sx2n−1,
(b) there exists z = lim

n→∞
gx2n = lim

n→∞
fx2n−1,

(c) fz ∈ Sz, gz ∈ Tz.

Proof. Choose a real number k such that 1 < k <
(

1
q

)1/p
. Let x0 be an arbitrary

point of X. Since TX ⊆ fX, there exists x1 ∈ X such that fx1 ∈ Tx0. It follows
from Lemma 4 that there exists u1 ∈ Sx1 such that

d(u1, fx1) ≤ kH(SX1, Tx0) ,

where k > 1. Moreover, since SX ⊆ gX, there exists a point x2 in X such that
u1 = gx2 and

d(gx2, fx1) ≤ kH(Sx1, Tx0) .

Proceeding in this way, we can obtain a sequence {xn} in X such that for each n

(2) d(gx2n, fx2n−1) ≤ kH(Sx2n−1, Tx2n−2)

and

(3) d(fx2n+1, gx2n) ≤ kH(Tx2n, Sx2n−1)

where
gx2n ∈ Sx2n−1 and fx2n−1 ∈ Tx2n−2 .

Using (1), (2) and (3), we get

dp(gx2n,fx2n+1) ≤

≤ kpq[αdp(fx2n−1, Sx2n−1)dp(gx2n, Tx2n) + βd2p(fx2n−1, gx2n)]
αmax{δp(fx2n−1, Sx2n−1), δp(gx2n, Tx2n)}+ βdp(fx2n−1, gx2n)
≤kpqdp(fx2n−1, gx2n)

≤(kpq)(kp)Hp(Sx2n−1, Tx2n−2)

≤(k2pq2)dp(gx2n−2, fx2n−1) ,
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and hence

(4) d(gx2n, fx2n+1) ≤
(
kq

1
p

)2n
d(fx1, gx0) .

Similarly, we have

(5) d(gx2n, fx2n−1) ≤
(
kq

1
p

)2n−1
d(fx1, gx0)

for all n. It follows from (4) and (5) that {fx2n−1} is a Cauchy sequence in X,
and so there exists z ∈ X such that lim

n→∞
fx2n−1 = z. In view of (5), we also have

lim
n→∞

gx2n = z. We now show that z is a coincidence point of f and S, that is,

fz ∈ Sz. The H-continuity of S ensures that

H(SfX2n−1 , Sz)→ 0 .

Since lim
n→∞

fx2n−1 = z = lim
n→∞

gx2n and gx2n ∈ Sx2n−1, it follows that

d(fx2n−1, Sx2n−1)→ 0 .

Further, since f and S are R-weakly commuting, we have

d(fgx2n, Sz) ≤ H(fSx2n−1, Sz)

≤ H(fSx2n−1, Sfx2n−1) + H(Sfx2n−1, Sz)

≤ Rd(fx2n−1, Sx2n−1) + H(Sfx2n−1, Sz) .

On letting n → ∞ the above inequality yields d(fz, Sz) = 0, which implies fz ∈
Sz. Similarly, we can show that gz ∈ Tz. This establishes the theorem. �

If we put α = γ = 0 and p = 1 in Theorem 5, we get at once the following
corollary.

Corollary 6. Let X be a complete metric space, f , g : X → X continuous
mappings, and S, T : X → CB(X) H-continuous mappings such that TX ⊆ fX
and SX ⊆ gX. If the pairs (f, S) and (g, T ) are R-weakly commuting and

H(Sx, Ty) ≤ qd(fx, gy)

for all x, y ∈ X, where 0 ≤ q < 1, then there exists a sequence {xn} in X such
that

(a) for every n, fx2n−1 ∈ Tx2n−2, gx2n ∈ Sx2n−1,
(b) there exists z = lim

n→∞
gx2n = lim

n→∞
fx2n−1,

(c) fz ∈ Sz, gz ∈ Tz.

Remark 7. Theorem 5 generalizes many fixed point and coincidence theorems,
we mention only those due to Hadzic [3], Kaneko [5] and Nadler [7].
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