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TRANSFORMATION OF DIVERGENCE THEOREM IN
DYNAMICAL FIELDS

SERGEY B. KARAVASHKIN

Abstract. In this paper we will study the flux and the divergence of vector in

dynamical fields, on the basis of conventional divergence definition and using
the conventional method to find the vector flux. We will reveal that vector

flux and divergence of vector do not vanish in dynamical fields. In terms
of conventional EM field formalism, we will show the changes appearing in

dynamical fields.

1. Introduction

“As long ago as in 19th century, the scientists began feeling about for the
main mathematical ‘body’. This ‘body’ contains the following substantial con-
cepts: gradient, potential, flux, divergence, curl, circulation, and some others.
The knowledge of these concepts is urgently needed when studying the physics,
mechanics, and a number of engineering disciplines” [1, p.5].

In the number of mentioned basic concepts, the finding of divergence of vector
is an unalienable part of the EM field theory formalism. Using it, we express the
conservation laws of charge, current, flux, energy, etc. Using the theorems basing
on it, we develop the methods to study the distribution, propagation, attenuation
of EM processes.

It is thought to be absolutely proved that in a charge-free region

div−→F (−→r , t) = 0 ,(1)

where −→F (−→r , t) is some vector whose parameters depend on coordinates and time.
Rather, in the initial formulation of Poisson theorem, −→F (−→r , t) does not depend
on time t, since “the operation −→∇ · −→U ≡ div−→U (divergence of −→U ) relates to the
sources of the vector field−→U (−→r )” [2, p.29], not −→U (−→r , t).

The more, the initial definition of vector flux, on whose basis the divergence
concept is formulated, also means the field being stationary. Particularly, in [1,
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p.91], when formulating its definition, it is supposed that “the vector flux depends
on the size of surface, on the value of vector −→A (P ), and on the direction of this
vector relatively to the perpendicular to the surface”. It means, in the initial
definitions, the time dependence for the flux is absent too.

Necessity to take the divergence of flux in dynamical fields requires to broaden
the domain, where the definition of divergence is true. Due to it, also for the vectors−→
F (−→r , t), by default, its main definition was recognised valid in the following form:
“The divergence of vector function of the point −→F (−→r ) is scalar function of the
point, defined as

div−→F (−→r , t) = −→∇ · −→F = lim
δ→0

∫
S1
d−→s · −→F (−→r1 )∫
V1
dV

,(2)

where V1 is the region containing the point (−→r ); S1 is the closed surface bounding
the region V1; δ is the most distance from the point (−→r ) to the point on the surface
S1” [3, p.166]. With it, also by default, all the theorems basing on the definition of
divergence were kept unchanged, in that number the mentioned Poisson theorem.

As a result, accounting the electrical vector −→E and magnetic vector −→H time-
dependent, Poisson equation in the form (1) was included to the Maxwell system
for dynamical fields free of charges and currents. Particularly, Landau writes:
“The electromagnetic field in vacuum is defined by Maxwell equations in which we
have to put ρ = 0; j = 0 (here ρ is the charge density and j is the electric current
density in the studied domain – S.K.). Write them down again:

curl−→E = −1
c

∂
−→
H

∂t
; div−→E = 0 ;(3)

curl−→H =
1
c

∂
−→
E

∂t
; div−→H = 0 .

Solutions of these equations can be non-zero. It means that an electromagnetic
field can exist even in absence of whatever charges” [4, p.143].

However, the force lines of stationary and dynamical fields in general case es-
sentially differ. This is well-known not only in case of electrodynamics, but e.g.
in hydrodynamics: “In general case, the force lines do not coincide with the tra-
jectories. The family of lines of current xi = xi

(
c1, c2, c3, λ, t

)
(where c1, c2, c3

are the generalised parameters and λ (s, L) is some function of the line of current
L at the length of the arc s along the line of current – S.K.) is time-dependent
and different at different moments. However, the parameter t is included to the
right parts of the differential equations of lines of current and of the differential
equations determining the regularity of motion or trajectories of particles - only
in the case of unsteady motions. In case of steady motions, the difference between
these equations disappears” [5, p.41].

This difference leads to such a fact that, for example, in the basic equations
of the method used for studying the EM radiation attenuating above the Earth
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surface, the vertical dipole radiation is presented as [6, p.130]:

Ez (x, y, 0) = w (r)
e−jk0r

r
(4)

(where w (r) is the ’attenuation factor’ and k0 is the wave coefficient – S.K.),
in which the time dependence is deleted from a conventional expression for a
travelling wave, and the radiation field is considered as a stationary one. Such a
simplification allows the authors to express “the field at the arbitrary point of a
plane with the help of Green function” [6, p.130].

At the same time, when studying the vector potential−→A (−→r , t) produced in the
far of dipole having the dipole momentum d (τ0) (where τ0 is a time parameter),
as a result of calculation, Levitch [7, p.107] obtains

div−→A (−→r , t) = − 1
c2r

−→··
d (τ0) · −→n = −1

c

∂
−→
A

∂t
· −→n(5)

(where c is the light velocity; r is the distance from dipole;−→n is the direction from
the dipole to the studied point). The expression (5) basically differs from (1) by
having a time-dependent right-hand part. This is due to the difference between
dynamical and stationary fields shown above.

In some cases, as for example, when studying the attenuation of EM radiation
from a stationary source, the difference is negligible. But in a number of problems,
if the source amplitude varied in time or if the problem required knowing the
momentary wave parameters value at some point or region, such an approximation
becomes incorrect, and we need to take into account the dynamical pattern of
process. The more that in the beginning of the 20th century Eichenwald noted
that for Pointing vector also [8, p.123], “if we apply the equation

∂

∂t

∫
Wdτ = −

∫
fnds(6)

(where fn is the projection of vector f to the external normal to the surface
element ds; W is the density of EM energy; τ is a picked out region – S.K.) to
a finite region, then, generally speaking, its right part will be non-zero, and the
electromagnetic energy within this region will vary in time”.

This problem is solvable if introducing the correspondence between the conven-
tional definition of divergence (2) and the formulation of theorems proved on the
basis of this definition. This will generalise the divergence definition per se for the
dynamical case and will refine the methods to investigate the EM fields in space.

The investigation that we will carry out in this paper will be targeted to this
problem, and the most important its results will be described below.

2. Preliminary analysis for the case of 1D flux

The divergence of vector in dynamical fields is convenient to be studied, be-
ginning with a simplified model of 1D flux. Proceeding from the fact that the
divergence definition “relates to any vector function, not only to the electrical
field; to denote this function, we will use the symbol F (x, y, z). In other words, in
the meanwhile we will give a preference for mathematics before physics and will
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name F simply - a vector function in general form, meaning, of course, 3D space”
[9, p.69].

Let in some bounded connective, source-free space region Ω propagate a plane-
parallel wave, whose force vector −→F (x, t) has a conventional form

F (x, t) = F0 sin (ωt− kx) ,(7)

where ω is the frequency of the given vector variation and k is the wave coefficient.
Pick out of this region four surfaces a0, a1, a2, a3 perpendicular to the wave propa-
gation direction −→n , and form with their help three picked out regions V01, V02, V03

bounded by the corresponding surfaces and the lateral surface connecting them,
as shown in Fig.1, above. Considering the 1D pattern of wave and that −→F (x, t)
is parallel to the lateral surface of the picked out regions, further we will not take
into account the lateral surfaces.

Fig.1. The time-dependent diagram for the investigation of
vector flux through the picked out space
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Basing on this model and on the conventional divergence definition (2), de-
termine the flux of vector ∆Φ0i = Φi − Φ0 and the specific flux of vector Gi =
∆Φ0i/V0i, where Φ0 is the flux going through the surface a0, and i = 1, 2, 3. We
will use the conventional method described, e.g., in [1, pp.90-91] and [9, pp.70-71].
Since the picked out regions V01, V02, V03 are finite, then Gi has the form

Gi =

∫
S1
d−→s · −→F (s)∫
V1
dV

=
∆Φ0i

Vi
.(8)

Plot the diagram of −→F (x, t) space-time variation, remembering the progressive
pattern of wave (7). Basing on the diagrams of F (x, t) shown in Fig.1, centre, we
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can easy determine ∆Φ0i, since the integration amounts to a simple multiplying of−→
F (x, t) parameters at a picked out moment of time t at a studied surface into the
size of this surface. The obtained results calculated for the moment fixed in Fig.1,
left are shown in Fig.1, right. As we can see from calculation, despite we used the
conventional definition and method, the obtained value ∆Φ0i in general case does
not vanish at the boundaries of the picked out regions. It is different both for all
the surfaces a1, a2, a3 and all the moments of time, though ∆Φ0i was calculated
relatively to the surface a0 common for all the regions and simultaneously for
all the picked out regions. The regularity ∆Φ0i (t) shown in Fig.2 reflects this
peculiarity; it is plotted on the basis of calculation of Fig.1. As we see from Fig.2,
both amplitude and phase of ∆Φ0i (t) are different for the picked out regions, the
same as these parameters are different for Gi (t) whose regularity is shown in Fig.3.
The more, when diminishing the size of picked out region, the amplitude of Gi
increases. It confirms that the flux through a picked out region is time-inconstant
in dynamical fields, and the fact of ∆Φ0i time-variation is conditioned not by the
space parameters of flux, but namely by the progressive pattern of wave, which
we can easy prove mathematically.

-2F0 S

0

2F0 S

t0
t0 +π /ω
t0 +2π /ω

t

∆Φ0i ∆Φ01 ∆Φ02 ∆Φ03

Fig.2. The time dependencies of the flux through the
picked out space on the size of given region

Actually, for any region picked out at a moment t we have

∆Φ0i = [F (xi, t)− F (x0, t)]S =(9)
= F0S [sin (ωt− kxi) − sin (ωt − kx0)] =

= −2F0S sin k
∆xi

2
cos
(
ωt − kxi − k

∆xi
2

)
(where ∆xi = xi−x0 is the distance between the surfaces ai and a0). Considering
that in the studied case Vi = ∆xiS, we obtain (8) for Gi as

Gi = −
2F0S sin k∆xi

2

∆xi
cos
(
ωt − kxi − k

∆xi
2

)
.(10)

Because the regularity Gi (∆xi) is conditioned by the finite velocity of the wave
space-propagation, we can express ∆xi through the time characteristic of the wave
delay ∆ti:

k∆xi = ω∆ti .(11)
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Substituting (11) into (10), we obtain

Gi =
ωF0

c

sinω∆ti
2

ω∆ti
2

cos
(
ωt − kx0 − ω

∆ti
2

)
(12)

(where c is the wave propagation velocity). As we see from (12), both amplitude
and phase of Gi depend on ∆ti; it completely corresponds to the plot shown in
Fig.3. With it the specific flux amplitude depends on the ratio of sine of argument
ω∆ti/2 to this argument, determining the first significant limit. It backgrounds
that the inequality of flux to zero in dynamical fields is the objective fact.

-ωF0/c

0

ωF0/c
G1 G2

G3

Gi

t0 +π /ω
t0 +2π /ω

t

Fig.3. The time dependencies of the specific flux
through the picked out space on the size of given
region

t0

To determine the divergence on the basis of (12) in accord to (2), it is sufficient
to find the limit of Gi at ∆ti → 0. Taking it for any of picked out regions at the
moment t, we obtain

div−→F (x, t) = −ωF0

c
lim

∆ti→0

sinω∆ti
2

ω∆ti
2

cos
(
ωt− kx− ω∆ti

2

)
=(13)

= −ωF0

c
cos (ωt− kx) .

Thus, similarly to the flux, the divergence of −→F (x, t) does not vanish too, and
Levitch’s expression (5) in case of 1D flux and harmonic time-dependence of lon-
gitudinal vector −→A (−→r , t) will completely correspond to (13). On one hand, it
corroborates the result obtained by Levitch for the vector potential of dipole ra-
diator, and on the other hand, it shows more general pattern of the result.

So we can state that at least for any 1D flux in dynamical fields the divergence
of its vector does not vanish, being inconsistent with the conventional concepts
basing on Poisson theorem.

We should note again, as we mentioned in the introduction, the difference be-
tween the obtained results and conventional concept is conditioned by the fact
that in all the theorems proved before on the basis of divergence definition, in
fact only stationary fields and stable fluxes were considered. While in dynamical
fields, not only the density of space-distribution of the force lines, but also the
wave propagation velocity, being finite and causing the phase delay, have effect on
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the value of divergence. The presence of this phase delay causes that the momen-
tary values of −→F (x, t) amplitude at the opposite surfaces are different. Because
of it, the flux becomes dependent on the size of picked out region. It evidences
that, when finding the divergence in dynamical fields, in general case, one should
take into account the time characteristic of the flux. And when passing to the
stationary fields, i.e. at ω→ 0 and/or c→∞, the right part of (13) automatically
vanishes, coming to the complete accord with conventional concept (1).

3. The complete proof of the divergence theorem in dynamical
fields

Generalising the above consideration of 1D flux, consider a general case of
arbitrary flux of vector −→F (−→r , t). Let in some connective source-free space Ω
propagate some flux whose vector −→F (−→r , t) coincides with the direction−→n of flux,
as shown in Fig.4; its time dependence is

F (r, t) = F0 sin (ωt − kr) .(14)

S1

S2

V

Fig.4. General form of the time-
variable field tube of the flux

( ),F r t t− ∆
G G

2n
G

1n
G

( ),F r t
G G

To find the divergence of this vector, we will use, as before, a conventional
definition (2) and the same technique to find the flux through the picked out
region, but taking into account the presence of phase of the wave space-delay.
Pick out of Ω some region V , so that its ends coincide with the equiphase surfaces
of flux, and its lateral surfaces - with the force tubes of current. Then, accounting
that the wave propagation velocity is finite, we can write

∆l = c∆t = const,(15)

where ∆l is the length of the picked out force tube; ∆t is the wave phase delay.
Thus, basing on (15) and taking into account the particular case considered above,
we have set up a relation between the length of the picked out region and the phase
delay. We will take this fact into account in the further studying.

According to the statement of problem, the surface S consists of three compo-
nents: S = S1 + S2 + Sl (where S1, S2 are the end surfaces, and Sl is the lateral
surface of the picked out region). Taking into account the statement of problem
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and the results of previous investigation, the complete flux through the surface S
is ∫

S

d−→s · −→F (−→r , t) =
∫
S1

d−→s · −→F (−→r , t) +
∫
S2

d−→s · −→F (−→r , t−∆t) =(16)

=
∫
S1+S2

d−→s · −→F (−→r , t) +
∫
S2

d−→s ·∆−→F (−→r , t) ,

where ∆−→F (−→r , t) = −→F (−→r , t)− −→F (−→r , t −∆t). In (16) we accounted at once the
time shift of vector function, as well as the absence of flux through the lateral
surface.

The first integral of the right-part sum in (16) has not a phase shift ∆t. In the
source-free field it vanishes, since in this case the condition for the divergence of
stationary vector function becomes true. The second right-hand integral in (16)
in general case is non-zero and can be easy transformed into the integral over the
space. For it, we will divide the picked out region into p small regions whose height
(along the lines of current) is

∆h =
∆l
p

= c
∆t
p

= cδt .

After it, we can write the under-integral expression ∆−→F (−→r , t) as

∆−→F (−→r , t) =
∑
p

δi
−→
F (−→r , t) =

∑
p

δi
−→
F (−→r , t)

∆h
∆h =(17)

=
1
c

∑
p

δi
−→
F (−→r , t)
δt

∆h ,

where δi
−→
F (−→r , t) = −→F (−→r , t− (i− 1) δt)−−→F (−→r , t− iδt); in this case 1 ≤ i ≤ p.

Taking the limit δt→ 0 in (17), we come to the integral

∆−→F (−→r , t) =
1
c

∫
∆l

∂
−→
F (−→r , t)
∂t

dl .(18)

Substituting (18) into (16) and knowing that, according to Fig.4, at the boundary
S2 the vector d−→s = ds ·−→n2, and −→n2 coincides with the vector of flux−→n , we obtain
the required∫

S

d−→s · −→F (−→r , t) = −1
c

∫
S2

d−→s ·
∫

∆l

∂
−→
F (−→r , t)
∂t

dl =(19)

= −1
c

∫
V

d−→s · ∂
−→
F (−→r , t)
∂t

dl = −1
c

∫
V

−→n · ∂
−→
F (−→r , t)
∂t

dV .

Substituting (19) into (2), we come to the finite expression for the divergence of
vector:

div−→F (−→r , t) = −1
c
−→n · ∂

−→
F (−→r , t)
∂t

.(20)
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In the most general case of dynamical vector flux, (20) coincides with the result
obtained by Levitch in particular case for the vector potential. At the same time,
we identified −→F (−→r , t) with no any specified physical value, and studied the vector
in the most general form. So we can state that we have proved the

Theorem 1. When the wave flux propagating in the source-free space, the diver-
gence of flux of vector is proportional to the scalar product of derivative of this
vector with respect to time into the unit vector of direction of the flux.

4. Application to the EM field

Basing on the above results, we can obtain the refined values for the divergence
of vectors of electrical and magnetic fields in Maxwell system. Substituting the
electrical strength −→E (−→r , t) into (20) instead −→F (−→r , t), we obtain

div−→E (−→r , t) = −1
c
−→n · ∂

−→
E (−→r , t)
∂t

.(21)

Similarly, for the magnetic strength −→H (−→r , t)

div−→H (−→r , t) = −1
c
−→n · ∂

−→
H (−→r , t)
∂t

.(22)

For the vector potential −→A (−→r , t)

div−→A (−→r , t) = −1
c
−→n · ∂

−→
A (−→r , t)
∂t

.(23)

Knowing that the scalar potential ϕ(r, t) relates with the vector potential (see e.g.
[5, p.106]) as

ϕ(r, t) = −→A (−→r , t) · −→n ,(24)

we come to the known expression

div−→A (−→r , t) +
1
c

∂ϕ(r, t)
∂t

= 0(25)

establishing the integrity of relations in the EM field theory. The fact is important
that (25) has been obtained for dynamical fields. It follows from it that it is
incorrect to equal the scalar potential to zero in general case. More completely it
was proved in [10, pp.25-26].

At the same time, for transverse −→E and −→H , (21)-(23) coincide with the known
results (3), since the scalar product of perpendicular vectors in the right part
vanishes. The more, zero result of divergence of curl will also keep valid. In fact,
in accord with item 3,

−→∇ · −→F (−→r , t) = −1
c
−→n · ∂

−→
F (−→r , t)
∂t

.(26)

If we take −→F (−→r , t) as
−→
F (−→r , t) = curl−→G (−→r , t) ,(27)
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we obtain for transverse field, where −→G ⊥ −→n

−→∇ ·
[−→∇ ×−→G ] = −1

c
−→n ·

∂
[−→∇ ×−→G ]

∂t
= 0 ,(28)

since we know that the curl of transverse vector−→G (−→r , t) is perpendicular both to
the vector and to the field propagation direction−→n . The similar result will be for
the longitudinal vector, since the curl of longitudinal vector is zero.

Thus, for any inclined vector of a field, the divergence of curl of vector remains
zero, since the curl of vector is perpendicular to the wave propagation. But it
does not concern the results obtained for the divergence of longitudinal vector of
the field. In (21) and (22) the derivatives of −→E and −→H with respect to time are
the consequence of wave space-delay and cannot vanish if these vectors have a
dynamical pattern. The changes in (21) and (22) give them the wave pattern,
since, despite these equations are the first-order, expressions like

−→
E (−→r , t) = −→

E (ωt− kr)(29)
−→
H (−→r , t) = −→

H (ωt− kr)
are their solutions.

As follows from it, the longitudinal component of EM field has the wave prop-
erties too, irrespectively to the conventional concept that in the longitudinal field
“the motion of energy is absent, there takes place only a periodic exchange of the
energy between the electrical and magnetic components of a field” [11, p.99]. The
only point we should mark is, the longitudinal component of a field has its proper-
ties that basically distinguish it from a transverse wave. Conventional symbols of
the vortex vector −→H (−→r , t) do not allow us to describe the magnetic field generat-
ing around the longitudinal dynamical E-field, because with it, at any point of the
space, not vector but some circulation around the electrical vector will correspond
to the magnetic field [10, p.42]. The divergence of this circulation will not vanish,
as in (28), since its direction coincides with the flux direction. So it also will have
the wave properties.

The fact that longitudinal EM waves (LEMWs) in a free space do exist was
corroborated experimentally at the laboratory SELF in 1990. The portable device
radiating/receiving the directed LEMW at 30 kHz range has been constructed and
multiply demonstrated. But this is the subject of a wide consideration being out
of frames of this paper.

5. Conclusions

As a result of investigation that we carried out, basing on the conventional
definition of divergence and using the conventional method to find the flux of
vector, we have revealed that:

- in dynamical fields, in general case, the flux and divergence of vector are
non-zero;

- for the vector of flux directed along the wave propagation, the divergence
is proportional to the scalar product of the particular derivative of this vector
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with respect to time into the wave propagation direction. Particularly, for this
component of the field, the pair of Maxwell equations describing the flux of vector
acquires the wave pattern;

- for the transverse component of wave, the divergence of vector remains zero,
and consequently, Maxwell equations remain valid.
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