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COMMON FIXED POINTS OF GREGUŠ

TYPE MULTI–VALUED MAPPINGS

R. A. RASHWAN AND M. A. AHMED

This work is considered as a continuation of [19,20,24]. The concepts
of δ-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued
mapping and a single-valued mapping are used to establish some common fixed
point theorems of Greguš type under a φ-type contraction on convex metric spaces.
Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem
B below) and Jungck [16] are thereby obtained. An example is given to support our
extension.

1. Introduction

Fixed point theory of single-valued and multi-valued maps has been investigated
extensively and applied to diverse problems during the last few decades. This the-
ory provides techniques for solving a variety of applied problems in mathematical
science and engineering (see e.g., [1, 2, 3, 23]).

In 1970, Takahashi [28] introduced a notion of convexity in metric spaces (see
Definition 2.7) and generalized some fixed point theorems in Banach spaces. Sub-
sequently, Ciric [6, 7], Gauy, Singh and Whitfield [14] and others have studied
convex metric spaces and fixed point theorems.

In [13], Greguš proved the following theorem:

Theorem A. Let C be a nonempty closed convex subset of a Banach space X
and T be a mapping of C into itself satisfying the inequality

‖Tx− Ty‖ ≤ a‖x− y‖ + b‖Tx− x‖+ c‖Ty − y‖ ,

for all x, y in C, where a > 0, b ≥ 0, c ≥ 0 and a + b + c = 1. Then T has a
unique fixed point.

Fisher and Sessa [11] established a generalization of Theorem A as follows:
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Theorem B. Let C be a nonempty closed convex subset of a Banach space X and
T, f be two weakly commuting mappings of C into itself satisfying the inequality

‖Tx− Ty‖ ≤ a‖fx− fy‖ + (1− a) max{‖Tx− fx‖, ‖Ty − fy‖} ,

for all x, y in C, where 0 < a < 1. If f is linear and nonexpansive in C such that
fC contains TC, then T and f have a unique common fixed point in C.

In recent years, common fixed points of Greguš type have been obtained by Ciric
[4, 5], Davies and Sessa [8], Diviccaro, Fisher and Sessa [9], Jungck [16], Khan and
Imdad [18], Murthy, Cho and Fisher [22] and Sessa and Fisher [26] in Banach
spaces. On the other hand, Jungck [16] and Mukherjee and Verma [21] replaced
linearity and nonexpansiveness by affine and continuity mappings, respectively. In
[8, 22], the authors replaced nonexpansiveness, linearity and weak commutativity
by continuity and compatibility. Also, Many theorems which are closely related to
Greguš Theorem extended to multivalued mappings such as Li-Shan [19, 20] and
Rashwan and Ahmed [24].

The aim of this paper is to prove some common fixed point theorems of Greguš
type under a φ-contraction. Our results extend Theorems A, B and Jungck [16]
to multi-valued mappings.

2. Basic Preliminaries

In the sequel, (X, d) denotes a metric space and B(X) is the set of all nonempty
bounded subsets of X. As in [10, 12], we define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} ,

for all A,B in B(X). If A consists of a single point a, we write δ(A,B) = δ(a,B).
Also, if B contains a single point b, it yields that δ(A,B) = d(a, b).

It follows immediately from the definition of δ(A,B) that

δ(A,B) = δ(B,A) ≥ 0 ,

δ(A,B) ≤ δ(A,C) + δ(C,B) ,

δ(A,B) = 0 iff A = B = {a} ,
δ(A,A) = diamA ,

for all A,B,C ∈ B(X).

Definition 1.1 [10]. A sequence {An} of nonempty subsets of X is said to be
convergent to a subset A of X if:

(i) each point a in A is the limit of a convergent sequence {an}, where an is in
An for n ∈ N (N : the set of all positive integers),

(ii) for arbitrary ε > 0, there exists an integer m such that An ⊆ Aε for n > m,
where Aε denotes the set of all points x in X for which there exists a point a in
A, depending on x, such that d(x, a) < ε.
A is then said to be the limit of the sequence {An}.
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Lemma 2.1 [10]. If {An} and {Bn} are sequences in B(X) converging to A and
B in B(X), respectively, then the sequence {δ(An, Bn)} converges to δ(A,B).

Lemma 2.2 [12]. Let {An} be a sequence in B(X) and y be a point in X such
that δ(An, y)→ 0. Then the sequence {An} converges to the set {y} in B(X).

Definition 2.2 [12]. A set-valued mapping F of X into B(X) is said to be con-
tinuous at x ∈ X if the sequence {Fxn} in B(X) converges to Fx whenever {xn}
is a sequence in X converging to x in X. F is said to be continuous on X if it is
continuous at every point in X.

Lemma 2.3 [12]. Let {An} be a sequence of nonempty subsets of X and z be in
X such that limn→∞ an = z, z being independent of the particular choice of each
an ∈ An. If a selfmap f of X is continuous, then {fz} is the limit of the sequence
{fAn}.

Definition 2.3 [27]. The mappings F : X → B(X) and f : X → X are said to
be weakly commuting if fFx ∈ B(X) and

(2.1) δ(Ffx, fFx) ≤ max{δ(fx, Fx), diamfFx} ,

for all x in X.

Note that if F is a single-valued mapping, then the set {fFx} consists of a
single point. Therefore, diamfFx = 0 for all x ∈ X and condition (2.1) reduces
to the condition given by Sessa [25], that is

(2.2) d(Ffx, fFx) ≤ d(fx, Fx) ,

for all x in X.
Two commuting mappings F and f clearly weakly commute but two weakly

commuting F and f do not necessarily commute as shown in [27].
In [15], Jungck generalized the concept of weakly commuting for single-valued

mappings in the following way:

Definition 2.4. Two single-valued mappings f and g of a metric space (X, d) into
itself are compatible if limn→∞ d(fgxn, gfxn) = 0 whenever {xn} is a sequence in
X such that limn→∞ fxn = limn→∞ gxn = t for some t in X.

It can be seen that two weakly commuting mappings are compatible but the
converse is false. Examples supporting this fact can be found in [15].

In [19], Li-Shan extended the definition 2.4 of compatibility to set-valued map-
pings as follows:

Definition 2.5. The mappings f : X → X and F : X → B(X) are δ-compatible if
limn→∞ δ(Ffxn, fFxn) = 0 whenever {xn} is a sequence in X such that fFxn ∈
B(X), Fxn→ {t} and fxn → t for some t in X.
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Definition 2.6. The mappings f : X → X and F : X → B(X) are subcompatible
if {t ∈ X : Ft = {ft}} ⊆ {t ∈ X : Fft = fF t}.
Remark 2.1. In [19], Li-Shan pointed out that the pair {F, f} is δ-compatible
=⇒ (F, f) is subcompatible but the converse is not true.

The following proposition of Jungck and Rhoades [17] is useful in the sequel:

Proposition 2.1. Let (X, d) be a complete metric space. Suppose that f : X →
X and F : X → B(X) and the pair {F, f} is δ-compatible.

(P1) Suppose that the sequences {fxn} and {Fxn} converge to t ∈ X and {t},
respectively. If f is continuous, then Ffxn → {ft}.

(P2) If {ft} = Ft for some t ∈ X, then Fft = fF t.

Now, we need some definitions due to Takahashi [28]:

Definition 2.7. Let X be a metric space and I = [0, 1] be the closed unit interval.
A continuous mapping W : X ×X × I → X is said to be a convex structure on X
if there is λ ∈ I such that for all x, y, u ∈ X

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) .

X together with a convex structure is called a convex metric space.

Clearly, a Banach space or any convex subset of it is a convex metric space
with W (x, y, λ) = λx + (1 − λ)y. More generally, if X is a linear space with a
translation invariant metric satisfying

d(λx+ (1− λ)y, 0) ≤ λd(x, 0) + (1− λ)d(y, 0) ,

then X is a convex metric space.

Definition 2.8. Let X be a convex metric space. A nonempty subset K of X is
convex if W (x, y, λ) ∈ K whenever x, y ∈ K and λ ∈ I.

Throughout this paper, a convex metric space will be denoted by (X, d,W ).
Let Φ be the set of all functions φ : [0,∞) −→ [0,∞) which satisfies the following
conditions:

(i) φ is non-decreasing and continuous from the right,
(ii) φ(t) < t for each t > 0.
Let F : X → B(X), f : X → X be mappings on a metric space X satisfying

the following inequality:

(2.3) δ(Fx, Fy) ≤ φ(ad(fx, fy) + (1− a) max{δ(Fx, fx), δ(Fy, fy)}) ,
for all x, y ∈ X, where 0 < a < 1 and φ ∈ Φ.

For our main theorems we need the following lemma, its proof is similar to that
of Lemma 2.3 in [20]:

Lemma 2.4. Let K be a nonempty closed subset of a complete metric space
(X, d). If the mappings f : K → K and F : K → B(K) satisfy the condition (2.3),
then

(I) F and f have at most one common fixed point u in K and further Fu = {u};
(II) if {xn} is a sequence in K such that δ(Fxn, fxn)→ 0, then there exists a

u ∈ K such that Fxn→ {u} and fxn → u.
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3. Main Results

The following theorem is useful in proving Theorem 3.2:

Theorem 3.1. Let K be a nonempty closed subset of a complete metric space
(X, d). Furthermore, let F : K → B(K) and f : K → K be a multivalued mapping
and a single-valued mapping, respectively satisfying the inequality (2.3).

(1) If F and f have a unique common fixed point u in K and Fu = {u}, then
inf{δ(Fx, fx) : x ∈ K} = 0.

(2) If inf{δ(Fx, fx) : x ∈ K} = 0 and F, f satisfy one of the following condi-
tions:

(U) the pair {F, f} is δ-compatible and f is continuous;
(V) the pair {F, f} is δ-compatible, FK ⊆ fK and F is continuous;
(Z) the pair {F, f} is subcompatible and f is surjective,

then F and f have a unique common fixed point u in K and Fu = {u}.
Proof. (1) Suppose that u is a unique common fixed point of F and f in K. Using
the inequality (2.3), we obtain that

δ(Fu, u) ≤ δ(Fu, Fu) ≤ φ((1− a)δ(Fu, u)) < δ(Fu, u) .

This contradiction implies that Fu = {u}. So, inf{δ(Fx, fx) : x ∈ K} = 0. To
prove (2) let {xn} be a sequence such that

δ(Fxn, fxn)→ inf{δ(Fx, fx) : x ∈ K} = 0 .

By Lemma 2.4 (II), there exists a point u ∈ K such that the sequences {fxn} and
{Fxn} converge to u and {u}, respectively.

Now suppose that (U) holds. Since f is continuous, then Lemma 2.3 shows that
the sequences {f2xn} and {fFxn} converge to fu and {fu}, respectively. Propo-
sition 2.1 (P1) implies that the sequence {Ffxn} converges to {fu}. Applying the
inequality (2.3), we get that

δ(Ffxn, Fxn) ≤ φ(ad(f2xn, fxn) + (1− a) max{δ(f2xn, F fxn), δ(Fxn, fxn)}) .

Letting n→∞, it implies from Lemma 2.1 that

d(fu, u) ≤ φ(ad(fu, u)) < ad(fu, u)) < d(fu, u) .

This contradiction demands that fu = u. From the inequality (2.3), it yields that

δ(Fxn, Fu) ≤ φ(ad(fxn, fu) + (1− a) max{δ(Fxn, fxn), δ(Fu, fu)}) .

Letting n −→∞, it follows from Lemma 2.1 that

δ(Fu, u) ≤ φ((1− a)δ(Fu, u)) < δ(u, Fu) .

This contradiction follows that Fu = {u}. Therefore, we know from Lemma 2.4
(I) that u is the unique common fixed point of F and f and Fu = {u}.



42 R. A. RASHWAN AND M. A. AHMED

Now suppose that (V) holds. Then the sequence {Ffxn} converges to Fu. Let
un be an arbitrary point in Fxn for n = 1, 2, .... Since d(un, u) ≤ δ(Fxn, u) and
F is continuous, then we get that the sequence {Fun} converges to Fu. By the
inequality (2.3), we deduce that

δ(Fun, Fun) ≤ φ((1− a)δ(Fun, fun))

≤ φ((1− a)[δ(Fun, F fxn) + δ(Ffxn, fFxn)]) .

As n→∞, the δ-compatibility of {F, f} and Lemma 2.1 lead to

δ(Fu, Fu) ≤ φ((1− a)δ(Fu, Fu))< δ(Fu, Fu) .

This contradiction gives that δ(Fu, Fu) = 0. From the inequality (2.3), we obtain
that

δ(Fun, Fxn) ≤ φ(ad(fun, fxn) + (1− a) max{δ(Fun, fun), δ(Fxn, fxn)})
≤ φ(a[δ(fFxn, F fxn) + δ(Ffxn, fxn)]

+ (1− a) max{δ(Fun, F fxn) + δ(Ffxn, fFxn), δ(Fxn, fxn)}) .

Since φ is continuous from the right and the pair {F, f} is δ-compatible, as n→∞,
using Lemma 2.1, we have that

δ(Fu, u) ≤ φ(aδ(Fu, u) + (1− a)δ(Fu, Fu)) < aδ(Fu, u) < δ(Fu, u) .

This implies that Fu = {u}. Since FK ⊆ fK, then there exists a point w in K
such that fw = u, it yields from inequality (2.3) that

δ(Fxn, Fw) ≤ φ(ad(fxn, fw) + (1− a) max{δ(Fxn, fxn), δ(Fw, fw)}) .

Letting n→∞, the last inequality becomes

δ(u, Fw) ≤ φ((1− a)δ(Fw, u)) < δ(Fw, u) .

This contradiction implies that Fw = {u}. Since {F, f} is δ-compatible and
{fw} = Fw for some w ∈ K, then Proposition 2.1 (P2) leads to

{u} = Fu = Ffw = fFw = {fu} .

It follows from Lemma 2.4 (I) that u is the unique common fixed point of F and
f and Fu = {u}.

Now suppose that (Z) holds. Then there exists a point v in K such that fv = u.
From the inequality (2.3), we obtain that

δ(Fv, Fxn) ≤ φ(ad(fv, fxn) + (1− a) max{δ(Fv, fv), δ(Fxn, fxn)}) .
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Letting n→∞, we get from Lemma 2.1 that

δ(Fv, u) ≤ φ((1− a)δ(Fv, u)) < δ(Fv, u) .

This contradiction implies that Fv = {u}. Since {F, f} is subcompatible, we have
that Fu = Ffv = fFv = {fu}. Using again the inequality (2.3), we deduce that

δ(Fu, Fxn) ≤ φ(ad(fu, fxn) + (1− a) max{δ(Fu, fu), δ(Fxn, fxn)}) .

As n→∞, Lemma 2.1 gives that

d(fu, u) ≤ φ(ad(fu, u)) < ad(fu, u) < d(fu, u) .

It follows that fu = u. From Lemma 2.4 (I), u is the unique common fixed point
of F and Fu = {u}. �

Now, we are ready to prove the following theorem:

Theorem 3.2. Let K be a nonempty closed subset of a complete convex metric
space (X, d,W ) and F : K → B(K), f : K → K be mappings satisfying the
inequality (2.3) . If fK is a convex subset of X such that FK ⊆ fK and F, f
satisfy one of the three conditions in Theorem 3.1, then F and f have a unique
common fixed point u in K and Fu = {u}.

Proof. Let x0 be an arbitrary point in K. Since FK ⊆ fK, we choose points
x1, x2, x3 in K such that fx1 ∈ Fx, fx2 ∈ Fx1, fx3 ∈ Fx2. For i = 1, 2, 3, we
obtain from the inequality (2.3) that

δ(Fxi, fxi) ≤ δ(Fxi, Fxi−1)

≤ φ(ad(fxi, fxi−1) + (1− a) max{δ(Fxi, fxi), δ(Fxi−1, fxi−1)})
≤ φ(aδ(Fxi−1, fxi−1) + (1 − a) max{δ(Fxi, fxi), δ(Fxi−1, fxi−1)}) .

If δ(Fxi, fxi) ≥ δ(Fxi−1, fxi−1), then

δ(Fxi, fxi) ≤ φ(δ(Fxi, Fxi)) < δ(Fxi, fxi) .

This contradiction implies that

δ(Fxi, fxi) < δ(Fxi−1, fxi−1) ,

for i = 1, 2, 3. It follows that

(3.1) δ(Fxi, fxi) < δ(Fx0, fx0) ,

for i = 1, 2, 3. Since fK is convex, then there exists w in K such that

fw = W (fx2, fx3,
1
2

) ∈W (Fx1, Fx2,
1
2

) ,
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where W (Fx1, Fx2,
1
2) = ∪{W (e,m, 1

2) : e ∈ Fx1,m ∈ Fx2}. �
Using the inequalities (2.3) and (3.1), we have from the definition of convex

structure that

d(fx1, fw) ≤ δ(fx1,W (Fx1, Fx2,
1
2

))

≤ 1
2

[δ(fx1, Fx1) + δ(fx1, Fx2)]

≤ 1
2

[δ(fx1, Fx1) + δ(Fx0, Fx2)]

<
1
2

[δ(fx0, Fx0) + φ(ad(fx0, fx2)

+ (1 − a) max{δ(fx0, Fx0), δ(Fx2, fx2)})]

<
a + 2

2
δ(Fx0, fx0) .(3.2)

Also, we have from the inequality (3.1) and the definition of convex structure that

d(fx2, fw) = δ(fx2,W (fx2, fx3,
1
2

))

≤ 1
2

[d(fx2, fx2) + d(fx2, fx3)]

≤ 1
2
δ(Fx2, fx2) <

1
2
δ(fx0, Fx0) .(3.3)

It follows from (3.2) and (3.3) that

δ(Fw, fw) ≤ δ(Fw,W (Fx1, Fx2,
1
2

))

≤ 1
2

[δ(Fw,Fx1) + δ(Fw,Fx2)]

≤ 1
2

[φ(ad(fw, fx1) + (1− a) max{δ(Fw, fw), δ(Fx1, fx1)})

+ φ(ad(fw, fx2) + (1 − a) max{δ(Fw, fw), δ(Fx2, fx2)})]

<
a

2
[d(fw, fx1) + d(fw, fx2)]

+ (1− a) max{δ(Fx0, fx0), δ(Fw, fw)}

<
a(3 + a)

4
δ(Fx0, fx0) + (1− a) max{δ(Fx0, fx0), δ(Fw, fw)} .

If δ(Fx0, fx0) ≥ δ(Fw, fw), then

δ(Fw, fw) <
4 + a2 − a

4
δ(Fx0, fx0) .

If δ(Fx0, fx0) ≤ δ(Fw, fw), then

δ(Fw, fw) <
3 + a

4
δ(Fx0, fx0) .
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Take α = max{ 4+a2−a
4 , 3+a

4 }. It is clear that 0 ≤ α < 1. we obtain that

δ(Fw, fw) < αδ(Fx0, fx0) .

Therefore

inf{δ(Fx0, fx0) : x0 ∈ K} ≤ inf{δ(Fw, fw) : fw = W (fx2, fx3,
1
2

)}

< α inf{δ(Fx0, fx0) : x0 ∈ K} .

So, inf{δ(Fx0, fx0) : x0 ∈ K} = 0. Hence, we have from Theorem 3.1 (2) that F
and f have a unique common fixed point u in K and Fu = {u}.
Remark 3.1. In Theorem 3.2, if F is a single-valued mapping of K into itself and
φ(t) = kt, for all t > 0, where k ∈ (0, 1), we obtain a generalization of Theorem B
for weakly commuting mappings.

Remark 3.2. In Theorem 3.2, if F is a single-valued mapping of K into itself and
φ(t) = kt, for all t > 0, where k ∈ (0, 1), we obtain a generalization of Theorem
2.1 for compatible mappings of Jungck [16].

Now, we give an example to show the greater generality of Theorem 3.2 over
Theorem B.

Example. Let X = [0,∞) with the Euclidean metric d and define

fx = x3 + 3x2 + 3x, Fx = [0,
x3

6
],

for all x in X. Suppose that K = [0, 10] and φ(t) = 1
3t. For all x, y ∈ X,

δ(Fx, Fy) = max{x
3

6
,
y3

6
}

=
1
3

1
2

max{x3, y3}

≤ 1
3

1
2

max{(x3 + 3x2 + 3x), (y3 + 3y2 + 3y)}

=
1
3

1
2

max{δ(fx, Fx), δ(fy, Fy)}

≤ 1
3

[
1
2
d(fx, fy) + (1− 1

2
) max{δ(fx, Fx), δ(fy, Fy)}]

= φ(
1
2
d(fx, fy) + (1− 1

2
) max{δ(fx, Fx), δ(fy, Fy)}) ,

i.e., condition (2.3) is satisfied. Also we fined that

fxn → 0 , Fxn→ {0} if xn → 0 and δ(Ffxn, fFxn)→ 0 as xn → 0 .

Also, we get fFxn ∈ B(X), i.e., f and F are δ-compatible and hence they are
subcompatible. It is obvious that f and F are continuous, FK ⊆ fK and f is
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surjective. So, all assumptions of Theorem 3.2 satisfy and 0 is the unique common
fixed point. Note that the extension of Theorem B to multi-valued mappings is
not applicable because F and f are not weakly commuting mappings at x = 1 and
hence Theorem B is not applicable.

Acknowledgement. The authors would like to express their thanks of the refer-
ees for their valuable comments of the manuscript.
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