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ON THE CONVERGENCE OF THE ISHIKAWA ITERATES

TO A COMMON FIXED POINT OF TWO MAPPINGS

LJ. B. ĆIRIĆ, J. S. UME∗ AND M. S. KHANAbstrat. Let C be a convex subset of a complete convex metric space X, and
S and T be two selfmappings on C. In this paper it is shown that if the sequence
of Ishikawa iterations associated with S and T converges, then its limit point is
the common fixed point of S and T . This result extends and generalizes the cor-
responding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek
[3].

In recent years several authors ([3], [7], [9], [11], [12]) have studied the conver-
gence of the sequence of the Mann iterates [5] of a mapping T to a fixed point of
T , under various contractive conditions.
The Ishikawa iteration scheme [4] was first used to establish the strong conver-

gence for a pseudo contractive selfmapping of a convex compact subset of a Hilbert
space. Very soon both iterative processes were used to establish the strong con-
vergence of the respective iterates for some contractive type mappings in Hilbert
spaces and then in more general normed linear spaces.

Recently, Naimpally and Singh [6] have studied the mappings which satisfy the
contractive definition introduced in [2]. They proved the following:

Theorem 1 [6]. Let X be a normed linear space and C be a nonempty closed
convex subset of X. Let T : C → C be a selfmapping satisfying

(A) ‖Tx − Ty‖ ≤ hmax {‖x − y‖ , ‖x − Tx‖ , ‖y − Ty‖ , ‖x− Ty‖+ ‖y − Tx‖}

for all x, y in C, where 0 ≤ h < 1 and let {xn} be the sequence of the Ishikawa-
scheme associated with T , that is, x0 ∈ C,

yn = (1 − βn)xn + βnTxn , n ≥ 0 ,

xn+1 = (1 − αn)xn + αnTyn , n ≥ 0 ,
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where 0 ≤ αn, βn ≤ 1. If {αn} is bounded away from zero and if {xn} converges
to p, then p is a fixed point of T .

The purpose of this paper is to generalize the result of Naimpally and Singh to
a pair of mappings S and T , defined on a convex metric space, which satisfy the
following condition:

(B) d(Sx, T y) ≤ h [d(x, y) + d(x, T y) + d(y, Sx)] ,

where 0 < h < 1.
It is clear that the condition (B) is very general, since by the triangle inequality,

condition (B) is always satisfied with h = 1.

We need the following definition.

Definition 1 [13]. Let X be a metric space and I = [0, 1] the closed unit interval.
A continuous mapping W : X ×X × I → X is said to be a convex structure on X

if for all x, y in X , λ in I, d[u, W (x, y, λ)] ≤ λd(u, x) + (1 − λ)d(u, y) for all u in
X . A space X together with a convex structure is called a convex metric space.

Clearly a Banach space, or any convex subset of it, is a convex metric space
with W (x, y, λ) = λx + (1 − λ)y. More generally, if X is a linear space with a
translation invariant metric satisfying d(λx+(1−λ)y, 0) ≤ λd(x, 0)+(1−λ)d(y, 0),
then X is a convex metric space. There are many other examples but we consider
these as paradigmatic.

Now we are in a position to state our main result.

Theorem 2. Let C be a nonempty closed convex subset of a convex metric space
X and let S, T : X → X be selfmappings satisfying (B) for all x, y in C. Suppose
that {xn} is Ishikawa type iterative scheme associated with S and T , defined by

x0 ∈ C ,(1)

yn =W (Sxn, xn, βn) , n ≥ 0(2)

xn+1 =W (Tyn, xn, zn) , n ≥ 0(3)

where {αn} and {βn} satisfy 0 ≤ αn, βn ≤ 1 and {αn} is bounded away from zero.
If {xn} converges to some point p ∈ C, then p is the common fixed point of S and
T .

Proof. It is clear that

d(x, y) ≤ d [x, W (x, y, λ)] + d [W (x, y, λ), y] ≤ (1− λ)d(x, y) + λd(x, y) = d(x, y)

implies the following:

d [x, W (x, y, λ)] = (1− λ)d(x, y) ; d [y, W (x, y, λ)] = λd(x, y) .
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From (3) it follows that

d(xn, xn+1) = d [xn, W (Tyn, xn, αn)] = αnd(xn, T yn) .

Since xn → p, d(xn, xn+1)→ 0. Since {αn} is bounded away from zero, it follows
that

(4) lim
n→∞

d(xn, T yn) = 0 .

Using (B) we get:

d(Sxn, T yn) ≤ h [d(xn, yn) + d(xn, T yn) + d(yn, Sxn)] .

From (2) and (3) we have

d(xn, yn) = d [xn, W (Sxn, xn, βn)] = βnd(xn, Sxn) ,

d(Sxn, yn) = d [Sxn, W (Sxn, xn, βn)] = (1 − βn)d(xn, Sxn) .

Thus we have
d(Sxn, T yn) ≤ h [d(xn, Sxn) + d(xn, T yn)] .

Since d(xn, Sxn) ≤ d(Sxn, T yn) + d(xn, T yn), we get

d(Sxn, T yn) ≤ h [d(Sxn, T yn) + 2d(xn, T yn)] .

Hence

d(Sxn, T yn) ≤
2h

1− h
d(xn, T yn) .

Taking the limit as n → ∞ we obtain, by (4),

lim
n→∞

d(Sxn, T yn) = 0 .

Since Tyn → p, it follows that Sxn → p. Since d(xn, yn) = βnd(xn, Sxn), it follows
also that yn → p.
From (B) again, we have

d(Sxn, T p) ≤ h [d(xn, p) + d(xn, T p) + d(p, Sxn)] .

Taking the limit as n → ∞, we obtain

d(p, T p) ≤ hd(p, T p) .

Since h < 1, d(p, T p) = 0. Hence Tp = p. Similarly, from (B),

d(Sp, Txn) ≤ h [d(p, xn) + d(p, Txn) + d(xn, Sp)] .

Taking the limit as n → ∞ we get

d(Sp, p) ≤ hd(p, Sp) .

Hence Sp = p. Therefore, Sp = Tp = p and the proof is complete. �
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Corollary. Let X be a normed linear space and C be a closed convex subset of
X. Let S, T : C → C be two mappings satisfying (B) and {xn} be the sequence of
Ishikawa-scheme associated with S and T ; for x0 ∈ C,

yn = (1− βn)xn + βnTxn , n ≥ 0 ,

xn+1 = (1− αn)xn + αnTyn , n ≥ 0 ,

If {αn} is bounded away from zero and {xn} converges to p, then p is a common
fixed point of S and T .

Remark. Corollary with S = T is a generalization of Theorem 1 of Naimpally and
Singh [6]. Therefore, Theorem 9 of Rhoades [9] is also a special case of Corollary,
where (B) is replaced with the following condition, introduced in [1],

(B’) d(Tx, T y) ≤ hmax {d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)} ,

where 0 < h < 1.
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