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EXISTENCE FOR NONCONVEX INTEGRAL INCLUSIONS

VIA FIXED POINTS

AURELIAN CERNEA

Abstract. We consider a nonconvex integral inclusion and we prove a Fi-
lippov type existence theorem by using an appropiate norm on the space
of selections of the multifunction and a contraction principle for set-valued
maps.

1. Introduction

This paper is concerned with the following integral inclusion

(1.1) x(t) = λ(t) +

∫ t

0

f
(

t, s, u(s)
)

ds ,

(1.2) u(t) ∈ F
(

t, V (x)(t)
)

, a.e. (I := [0, T ]) ,

where λ(.) : I → Rn, F (., .) : I × X → P(X), f(., ., .) : I × I × X → X ,
V : C(I,X) → C(I,X) are given mappings and X is a separable Banach space.

The aim of this paper is to obtain a version of Filippov’s theorem concerning
the existence of solutions for problem (1.1)-(1.2). Such kind of results have been
proved by Zhu ([8]). The approach proposed in the present paper is different to the
ones in [6], [8] and it is based on an idea of Tallos ([7]), applying the contraction
principle in the space of selections of the multifunction instead of the space of
solutions.

Our estimate is different from the usual form of the Filippov’s estimate ([8]).
This is a consequence of our method of deriving a “pointwise” inequality from a
norm inequality.

We note that similar results are obtained in the case of differential inclusions
([4], [7]), in the case of mild solutions of semilinear differential inclusions in Banach
spaces ([2]), and for hyperbolic differential inclusions ([3]).

The paper is organized as follows: in Section 2 we recall some preliminary
results that we use in the sequel and in Section 3 we prove our main result.
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2. Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue mea-
surable subsets of I. Consider X a real separable Banach space with the norm ‖.‖
and denote by P(X) the family of all nonempty subsets of X , by B(X) the family
of all Borel subsets of X . The unit ball in X will be denoted by B.

In what follows, as usual, we denote by C(I,X) the Banach space of all contin-
uous functions x(.) : I → X endowed with the norm ‖x(.)‖C = supt∈I ‖x(t)‖.

In order to study problem (1.1)-(1.2) we introduce the following assumption.

Hypothesis 2.1. Let F (., .) : I×X → P(X) be a set-valued map with nonempty
closed values that verify:

i) The set-valued map F (., .) is L(I) ⊗ B(X) measurable.
ii) There exists L(.) ∈ L1(I, R+) such that, for almost all t ∈ I, F (t, .) is

L(t)-Lipschitz in the sense that

dH

(

F (t, x), F (t, y)
)

≤ L(t)‖x− y‖ ∀ x, y ∈ X ,

where dH is the Hausdorff generalized metric on P(X) defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

iii) The mapping f : I × I ×X → X is continuous, V : C(I,X) → C(I,X) and
there exist the constants M1,M2 > 0 such that

‖f(t, s, u1) − f(t, s, u2)‖ ≤M1‖u1 − u2‖ , ∀u1, u2 ∈ X ,

‖V (x1)(t) − V (x2)(t)‖ ≤M2‖x1(t) − x2(t)‖ , ∀t ∈ I, ∀x1, x2 ∈ C(I,X) .

System (1.1)-(1.2) encompasses a large variety of differential inclusions and
control systems and, in particular, those defined by partial differential equations.

Example 2.2. Set f(t, τ, u) = G(t−τ)u, V (x) = x, λ(t) = G(t)x0 where {G(t)}t≥0

is a C0-semigroup with an infinitesimal generator A. Then a solution of system
(1.1)-(1.2) represents a mild solution of

(2.1) x′(t) ∈ Ax(t) + F
(

t, x(t)
)

, x(0) = x0 .

In particular, this problem includes control systems governed by parabolic partial
differential equations as a special case. When A = 0, relation (2.1) reduces to
classical differential inclusions.

To simplify the notations, we set

(2.2) Φ(u)(t) =

∫ t

0

f
(

t, τ, u(τ)
)

dτ , t ∈ I .

Then the integral inclusion system (1.1)-(1.2) becames

(2.3) x(t) = λ(t) + Φ(u)(t) , u(t) ∈ F
(

t, V (x)(t)
)

a.e. (I) ,

which may be written in the more “compact” form

u(t) ∈ F
(

t, V (λ+ Φ(u))(t)
)

a.e. (I) ,
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but the integral operator Φ(.) in (2.2) plays a certain role in the proofs of our main
results.

Denote m(t) =
∫ t

0
L(s) ds, t ∈ I.

Given α ∈ R we denote by L1(I,X) the Banach space of all (Bochner) integrable
functions u(.) : I → X endowed with the norm

‖u(.)‖1 =

∫ T

0

e−αM1M2m(t)‖u(t)‖ dt .

Definition 2.3. A pair of functions (x, u) is called a solution pair of (2.3), if
x(.) ∈ C(I,X), u(.) ∈ L1(I,X) and relation (2.3) holds.

We denote by S(λ) the solution set of (1.1)-(1.2).

Finally we recall some basic results concerning set valued contractions that we
shall use in the sequel.

Let (Z, d) be a metric space and consider a set valued map T on Z with
nonempty closed values in Z. T is said to be a l-contraction if there exists 0 < l < 1
such that:

d
(

T (x), T (y)
)

≤ ld(x, y) , ∀x, y ∈ Z .

If Z is complete, then every set valued contraction has a fixed point, i.e. a point
z ∈ Z such that z ∈ T (z) (see, for instance, [5]).

We denote by Fix (T ) the set of all fixed point of the multifunction T . Obviously,
Fix (T ) is closed.

Proposition 2.4 ([5]). Let Z be a complete metric space and suppose that T1, T2

are l-contractions with closed values in Y . Then

dH

(

Fix (T1),Fix (T2)
)

≤
1

1 − l
sup
z∈Z

d
(

T1(z), T2(z)
)

.

3. The main result

We are able now to prove a Filippov type existence theorem concerning the
existence of solutions of problem (1.1)-(1.2).

Theorem 3.1. Let Hypothesis 2.1 be satisfied, let λ(.), µ(.) ∈ C(I,X) and let

v(.) ∈ L1(I,X) be such that

d
(

v(t), F (t, V (y)(t)
)

≤ p(t) a.e. (I),

where p(.) ∈ L1(I, R+) and y(t) = µ(t) + Φ(v)(t), ∀t ∈ I.

Then for every α > 1 and for every ǫ > 0 there exists x(.) ∈ S(λ) such that for

every t ∈ I

‖x(t) − y(t)‖ ≤
α

α− 1
eαM1M2m(T )

[

‖λ− µ‖C +M1

∫ T

0

e−αM1M2m(t)p(t) dt
]

+ ǫ .

Proof. For λ ∈ C(I,X) and u ∈ L1(I,X) define

xu,λ(t) = λ(t) +

∫ t

0

f(t, s, u(s)) ds .
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Consider λ ∈ C(I,X), σ ∈ L1(I,X) and define the set valued maps:

Mλ,σ(t) := F (t, V (xσ,λ)(t)) , t ∈ I ,(3.1)

Tλ(σ) := {ψ(.) ∈ L1(I,X);ψ(t) ∈Mλ,σ(t) a.e. (I)} .(3.2)

We shall prove first that Tλ(σ) is nonempty and closed for every σ ∈ L1.
The fact that that the set valued map Mλ,σ(.) is measurable is well known.

For example the map t→ F (t, V (xσ,λ)(t)) can be approximated by step functions
and we can apply Theorem III. 40 in [1]. Since the values of F are closed, with
the measurable selection theorem (e.g. Theorem III.6 in [1]) we infer that Mλ,σ(.)
admits a measurable selection and Tλ(σ) is nonempty.

The set Tλ(σ) is closed. Indeed, if ψn ∈ Tλ(σ) and ‖ψn −ψ‖1 → 0, then we can
pass to a subsequence ψnk

such that ψnk
(t) → ψ(t) for a.e. t ∈ I and we find that

ψ ∈ Tλ(σ).
The next step of the proof will show that Tλ(.) is a contraction on L1(I,X).
Let σ1, σ2 ∈ L1(I,X) be given, ψ1 ∈ Tλ(σ1) and let δ > 0. Consider the

following set valued map:

G(t) := Mλ,σ2
(t) ∩

{

z ∈ X ; ‖ψ1(t) − z‖ ≤M1M2L(t)

∫ t

0

‖σ1(s) − σ2(s)‖ ds+ δ
}

Since

d
(

ψ1(t), Mλ,σ2
(t)

)

≤ dH

(

F (t, V (xσ1,λ)(t)), F (t, V (xσ2,λ)(t))
)

≤ L(t)‖V (xσ1,λ)(t) − V (xσ2,λ)(t)‖ ≤ L(t)M2‖xσ1,λ(t) − xσ2,λ(t)‖

≤ M2L(t)

∫ t

0

‖f
(

t, s, σ1(s)
)

− f
(

t, s, σ2(s)
)

‖ ds

≤ M1M2L(t)

∫ t

0

‖σ1(s) − σ2(s)‖ ds

we deduce that G(.) has nonempty closed values.
Moreover, according to Proposition III.4 in [1], G(.) is measurable.
Let ψ2(.) be a measurable selection of G(.). It follows that ψ2 ∈ Tλ(σ2) and

‖ψ1 − ψ2‖1 =

∫ T

0

e−αM1M2m(t)‖ψ1(t) − ψ2(t)‖ dt

≤

∫ T

0

e−αM1M2m(t)(M1M2L(t)

∫ t

0

‖σ1(s) − σ2(s)‖ ds) dt

+ δ

∫ T

0

e−αM1M2m(t) dt

≤
1

α
‖σ1 − σ2‖1 + δ

∫ T

0

e−αM1M2m(t) dt .

Since δ is arbitrarly, we deduce that

d(ψ1, Tλ(σ2)) ≤
1

α
‖σ1 − σ2‖1.
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Replacing σ1(.) with σ2(.), we obtain

dH(Tλ(σ1), Tλ(σ2)) ≤
1

α
‖σ1 − σ2‖1 .

Hence Tλ(.) is a contraction on L1(I,X).
We consider the following set-valued maps

F̃ (t, x) := F (t, x) + p(t) ,

M̃λ,σ(t) = F̃ (t, V (xσ,λ)(t)) ,

T̃µ(σ) = {ψ ∈ L1(I,X) ; ψ(t) ∈ M̃µ,σ(t) a.e. (I)} .

Obviously, F̃ (., .) satisfies Hypothesis 2.1.

Repeating the previous step of the proof we obtain that T̃µ is also a 1
α
-contraction

on L1(I,X) with closed nonempty values.
We prove next the following estimate:

(3.3) dH(Tλ(σ), T̃µ(σ)) ≤
1

αM1
‖λ− µ‖C +

∫ T

0

e−αM1M2m(t)p(t) dt .

Let φ ∈ Tλ(σ), δ > 0 and define

G1(t) = M̃λ,σ(t) ∩ {z ∈ X ; ‖φ(t) − z‖ ≤M2L(t)‖λ− µ‖C + p(t) + δ} .

With the same arguments used for the set valued map G(.), we deduce that

G1(.) is measurable with nonempty closed values. Let ψ(.) ∈ T̃µ(σ). One has:

‖φ− ψ‖1 ≤

∫ T

0

e−αM1M2m(t)‖φ(t) − ψ(t)‖ dt

≤

∫ T

0

e−αM1M2m(t)[M2L(t)‖λ− µ‖C + p(t) + δ] dt

= ‖λ− µ‖C

∫ T

0

e−αM1M2m(t)M2L(t) dt

+

∫ T

0

e−αM1M2m(t)p(t) dt+ δ

∫ T

0

e−αM1M2m(t) dt .

Since δ is arbitrarly, as above we obtain (3.3).
Applying Proposition 2.4 we obtain:

dH(Fix (Tλ),Fix (T̃µ)) ≤
1

M1(α− 1)
‖λ− µ‖C +

α

α− 1

∫ T

0

e−αM1M2m(t)p(t) dt .

Since v(.) ∈ Fix (T̃µ), it follows that there exists u(.) ∈ Fix (Tλ) such that:
(3.4)

‖v − u‖1 ≤
1

M1(α− 1)
‖λ− µ‖C +

α

α− 1

∫ T

0

e−αM1M2m(t)dt+
ǫ

M1eαM1M2m(T )
.

We define

x(t) = λ(t) +

∫ t

0

f
(

t, s, u(s)
)

ds .
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One has

‖x(t) − y(t)‖ ≤ ‖λ(t) − µ(t)‖ +M1

∫ t

0

‖u(s) − v(s)‖ ds

≤ ‖λ− µ‖C +M1e
αM1M2m(T )‖u− v‖1

Combining the last inequality with (3.4) we obtain

‖x(t) − y(t)‖ ≤ ‖λ− µ‖C

[

1 +
eαM1M2m(T )

α− 1

]

+
M1α

α− 1
eαM1M2m(T )

∫ T

0

e−αM1M2m(t)p(t) dt+ ǫ

≤
α

α− 1
eαM1M2m(T )

[

‖λ− µ‖C +M1

∫ T

0

e−αM1M2m(t)p(t) dt
]

+ ǫ

and the proof is complete.

Remark 1. If f(t, τ, u) = G(t − τ)u, V (x) = x, λ(t) = G(t)x0 where {G(t)}t≥0

is a C0-semigroup with an infinitesimal generator A, Theorem 3.1 yields the result
in [2] obtained for mild solutions of the semilinear differential inclusion (2.1).
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