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FIXED POINTS THEOREMS OF NON-EXPANDING FUZZY

MULTIFUNCTIONS

ABDELKADER STOUTI

Abstract. We prove the existence of a fixed point of non-expanding fuzzy
multifunctions in α-fuzzy preordered sets. Furthermore, we establish the exis-
tence of least and minimal fixed points of non-expanding fuzzy multifunctions
in α-fuzzy ordered sets.

1. Introduction

In [19], Zadeh introduced the notion of fuzzy order and similarity, which was
investigated by several authors (see [1, 3, 7, 13]). During the last few decades many
authors have established the existence of a lots of fixed point theorems in fuzzy
setting: Beg [2, 4], Bose and Sahani [6], Fang [8], Hadzic [9], Heilpern [10], Kaleva
[11] and the present author [13, 14, 15, 16]. The aim of this paper is to study the
existence of fixed points of non-expanding fuzzy multifunctions in α-fuzzy setting.

Let X be a nonempty crisp set, with generic element of X denoted by x. A
fuzzy subset A of X is characterized by its membership function µA : X → [0, 1]
and µA(x) is interpreted as the degree of membership of element x in fuzzy subset
A for each x ∈ X . Let A and B be two fuzzy subsets of X . We say that A is
included in B and we write A ⊆ B if µA(x) ≤ µB(x), for all x ∈ X . In particular,
if x ∈ X and µA(x) = 1, then {x} ⊆ A.

Let X be a nonempty crisp set and α ∈]0, 1]. An α-fuzzy preorder relation on
X is a fuzzy subset rα of X × X satisfying the following two properties:

(i) for all x ∈ X, rα(x, x) = α,
(ii) for all x, y ∈ X, rα(x, y) + rα(y, x) > α implies x = y.

A nonempty set X with an α-fuzzy preorder rα defined on it, is called an α-fuzzy
preorder and we denote it by (X, rα).

An α-fuzzy preordered set (X, rα) is called an α-fuzzy ordered set (see [14]) if
(iii) for all x, z ∈ X, rα(x, z) ≥ sup

y∈X

[inf{rα(x, y), rα(y, z)}].
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Let (X, rα) be a nonempty α-fuzzy preordered set. A fuzzy multifunction T :
X → [0, 1]X \ {∅} is called non-expanding if for every x ∈ X there exists y ∈ X

such that {y} ⊆ T (x) and rα(y, x) > α
2
.

In the third section of this paper, we first prove the following result (Theorem
3.1): if (X, rα) is a nonempty α-fuzzy preordered complete set and T : X →
[0, 1]X \ {∅} is a non-expanding fuzzy multifunction, then T has a fixed point.

Secondly, we establish the existence of least and minimal fixed points of non-
-expanding fuzzy multifunctions in α-fuzzy ordered sets (Theorems 3.3 and 3.5).
As consequences we obtain some fixed point theorems for non-expanding maps.

2. Preliminaries

In order to establish our main results, we give some concepts and results.

Definition 2.1. Let (X, rα) be an α-fuzzy preordered set. Then
(a) The α-fuzzy preorder rα is said to be total if for all x 6= y we have either

rα(x, y) > α
2

or rα(y, x) > α
2
. An α-fuzzy ordered set on which fuzzy order is

total is called rα-fuzzy chain.
(b) Let A be a subset of X . An element l ∈ X is a rα-lower bound of A if

rα(l, y) > α
2

for all y ∈ A. If l is a rα-lower bound of A and l ∈ A, then l is
called a least element of A. Similarly, we can define rα-upper bounds and greatest
elements of A.

(c) An element m of A is called a minimal element of A if rα(y, m) > α
2

for
some y ∈ A, then y = m. Maximal elements are defined analogously.

Let A be a nonempty subset of X . Then,

sup
rα

(A) = the least element of rα-upper bounds of A (if it exists),

and

inf
rα

(A) = the greatest element of rα-lower bounds of A (if it exists).

Definition 2.2. Let (X, rα) be a nonempty α-fuzzy preordered set. A map f :
X → X is called non-expanding if for every x ∈ X , rα(f(x), x) > α

2
.

An element x of X is called a fixed point of a map f : X → X if f(x) = x. We
denote by Fix (f) the set of all fixed points of f .

Definition 2.3. Let (X, rα) be a nonempty α-fuzzy preordered set and let (xβ) be
a family of X . We say that (xβ) is an α-fuzzy decreasing family if rα(xβ+1, xβ) >
α
2
.

Definition 2.4. A nonempty α-fuzzy preordered set (X, rα) is said to be an α-
fuzzy ordered complete set if rα is total and for every decreasing family (xβ) of
X , infrα

(xβ) exists in X .

Let X be a nonempty crisp set. A fuzzy multifunction is any map T : X →
[0, 1]X \ {∅} such that for every x ∈ X , T (x) is a nonempty fuzzy subset of X .

An element x of X is called a fixed point of a fuzzy multifunction T : X →
[0, 1]X \ {∅} if {x} ⊆ T (x). We denote by FT the set of all fixed points of T .
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Definition 2.5 ([13]). Let (X, rα) be an α-fuzzy ordered set. The inverse fuzzy
relation sα of rα is defined by sα(x, y) = rα(y, x), for all x, y ∈ X .

In [13], we established the following results.

Lemma 2.6 ([13, Lem. 3.6]). Let (X, rα) be a nonempty α-fuzzy ordered set. If

every nonempty rα-fuzzy chain has a rα-upper bound, then X has a maximal ele-

ment.

Lemma 2.7 ([13, Prop. 3.6]). Let (X, rα) be a nonempty α-fuzzy ordered set and

let sα be the inverse α-fuzzy relation of rα. Then,

(i) The α-fuzzy relation sα is an α-fuzzy order on X.

(ii) If every nonempty rα-fuzzy chain has a rα-infimum, then every nonempty

sα-fuzzy chain has a rα-supremum.

3. Main results

We begin this section by proving the existence of fixed point of non-expanding
fuzzy multifunctions. More precisely, we shall show the following:

Theorem 3.1. Let (X, rα) be a nonempty α-fuzzy preordered complete set and let

T : X → [0, 1]X \ {∅} be a non-expanding fuzzy multifunction. Then, T has a fixed

point.

Proof. Let (X, rα) be a nonempty α-fuzzy preordered complete set and let T :
X → [0, 1]X \ {∅} be an expanding fuzzy multifunction. Assume that T has no
fixed point and let x0 be a given element of X .

Next, we shall produce an α-fuzzy decreasing family (xβ) of X where β is an
ordinal as follows:

(i) First case: if β = 0, then the element x0 is given by our hypothesis.
(ii) Second case: β is a nonzero non limit ordinal. Since T is an expanding

fuzzy multifunction and rα is total, then for xβ−1 there is xβ ∈ X such that
{

{xβ} ⊆ T (xβ−1)

α > rα(xβ , xβ−1) > α
2

.

(iii) Third case: β is a limit ordinal. As (X, rα) is an α-fuzzy ordered complete
set, hence we have

xβ = inf
rα

{xγ : γ < β} .

It follows that if β and γ are two ordinals with β 6= γ, then we have xβ 6= xγ .

Now, we shall defining an ordinal valued function G by assign to every x ∈ X,

an ordinal G(x) as follows:

G(x) =

{

β if x = xβ

0 otherwise .

Therefore, the range of G is the set of all ordinals. From ZF Axioms of sub-
stitution [12, page 261], we conclude that the range of G is a set. That is a
contradiction. Therefore, T has a fixed point.
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As an application of Theorem 3.1, we obtain the following:

Corollary 3.2. Let (X, rα) be a nonempty α-fuzzy preordered complete set and

let f : X → X be a non-expanding map. Then, f has a fixed point.

For the existence of the least fixed point of non-expanding fuzzy multifunctions,
we shall show the following:

Theorem 3.3. Let (X, rα) be a nonempty α-fuzzy ordered set with a least element

l and let T : X → [0, 1]X \ {∅} be a non-expanding fuzzy multifunction. Then the

set FT of all fixed points of T is nonempty and l is the least element of FT .

Proof. Let (X, rα) be a nonempty α-fuzzy ordered set with a least element l

and let T : X → [0, 1]X \ {∅} be a non-expanding fuzzy multifunction. Since
T is an non-expanding fuzzy multifunction, there exists an element x of X such
that {x} ⊆ T (l) and rα(x, l) > α

2
. As l = infrα

(X), then rα(l, x) > α
2
. Hence,

rα(x, l) + rα(l, x) > α. Therefore, x = l. So l is fixed point of T . On the other
hand, l is the least element of X . Therefore, we deduce that l is the least fixed
point of T .

As a consequence of Theorem 3.3, we have:

Corollary 3.4. Let (X, rα) be a nonempty α-fuzzy ordered set with a least element

l and f : X → X be a non-expanding map. Then, the set Fix (f) of all fixed points

of f is nonempty and l is the least element of Fix (f).

Next, we shall establish the existence of a minimal fixed point of non-expanding
fuzzy multifunctions.

Theorem 3.5. Let (X, rα) be a nonempty α-fuzzy ordered set with the property

that every nonempty rα-fuzzy chain has a rα-infimum. Let T : X → [0, 1]X \ {∅}
be a non-expanding rα-fuzzy multifunction. Then, the set FT of all fixed points of

T is nonempty and has a minimal element.

To prove Theorem 3.5, we shall need the following lemma.

Lemma 3.6. Let (X, rα) be a nonempty α-fuzzy ordered set with the property

that every nonempty rα-fuzzy chain has a rα-infimum. Then, X has a minimal

element.

Proof. Let (X, rα) be a nonempty α-fuzzy ordered set with the property that
every nonempty rα-fuzzy chain has a rα-infimum. Let sα be the α-fuzzy inverse
order relation of rα. From Lemma 2.7, every nonempty rα-fuzzy chain has a sα-
supremum. Then, by Lemma 2.6, X has a maximal element m (say) in (X, sα).
Let x be an element of X such that rα(x, m) > α

2
. Then, sα(m, x) > α

2
. Since m

is a maximal element in (X, sα), hence x = m. Therefore, m is a minimal element
in (X, rα).

Now we are ready to give the proof of Theorem 3.5.

Proof of Theorem 3.5. Let (X, rα) be a nonempty α-fuzzy ordered set with the
property that every nonempty rα-fuzzy chain has a rα-infimum and let
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T : X → [0, 1]X \ {∅} be a non-expanding fuzzy multifunction. By using Lemma
3.6, we deduce that X has a minimal element m (say). As T is a non-expanding
fuzzy multifunction, so there is an element x of X such that {x} ⊆ T (m) and
rα(x, m) > α

2
. Since m is a minimal element of X , then x = m. Thus, m is a fixed

point of T . Using the fact that m is a minimal element of X, we conclude that m

is a minimal fixed point of T .

By using Theorem 3.5, we get:

Corollary 3.7. Let (X, rα) be a nonempty α-fuzzy ordered set with the property

that every nonempty rα-fuzzy chain has a rα-infimum and let f : X → X be a

non-expanding map. Then, the set of all fixed points of f is nonempty and has a

minimal element.
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