Subhash Chander Arora; Ruchika Batra; M. P. Singh Slant Hankel operators

Archivum Mathematicum, Vol. 42 (2006), No. 2, 125--133

Persistent URL: http://dml.cz/dmlcz/107988

Terms of use:

© Masaryk University, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO) Tomus 42 (2006), 125 – 133

SLANT HANKEL OPERATORS

S. C. ARORA, RUCHIKA BATRA AND M. P. SINGH

ABSTRACT. In this paper the notion of slant Hankel operator K_{φ} , with symbol φ in L^{∞} , on the space $L^{2}(\mathbb{T})$, \mathbb{T} being the unit circle, is introduced. The matrix of the slant Hankel operator with respect to the usual basis $\{z^{i} : i \in \mathbb{Z}\}$ of the space L^{2} is given by $\langle \alpha_{ij} \rangle = \langle a_{-2i-j} \rangle$, where $\sum_{i=-\infty}^{\infty} a_{i} z^{i}$ is the Fourier expansion of φ . Some algebraic properties such as the norm, compactness of the operator K_{φ} are discussed. Along with the algebraic properties some spectral properties of such operators are discussed. Precisely, it is proved that for an invertible symbol φ , the spectrum of K_{φ} contains a closed disc.

1. INTRODUCTION

Let $\varphi = \sum_{i=-\infty}^{\infty} a_i z^i$ be a bounded measurable function on the unit circle \mathbb{T} . Mark C. Ho in his paper [4] has introduced the notion of slant Toeplitz operator A_{φ} with symbol φ on the space L^2 and it is defined as follows

$$A_{\varphi}(z^i) = \sum_{i=-\infty}^{\infty} a_{2i-j} z^i$$

for all j in \mathbb{Z} , \mathbb{Z} being the set of integers.

Also, it is shown that if (α_{ij}) is the matrix of A_{φ} with respect to the usual basis $\{z^i : i \in \mathbb{Z}\}$ of L^2 , then $\alpha_{ij} = a_{2i-j}$. Moreover if $W : L^2 \to L^2$ be defined as

$$W(z^{2n}) = z^n$$

and

$$W(z^{2n-1}) = 0\,,$$

for each $n \in \mathbb{Z}$, then he has proved that $A_{\varphi} = WM_{\varphi}$, where M_{φ} is the multiplication operator induced by φ .

The Hankel operators H_{φ} are usually defined on the space H^2 but they can be extended to the space L^2 as follows.

²⁰⁰⁰ Mathematics Subject Classification: 47B35.

Key words and phrases: Hankel operators, slant Hankel operators, slant Toeplitz operators. Received August 28, 2004.

The Hankel operator S_{φ} on L^2 is defined as

$$S_{\varphi}(z^j) = \sum_{i=-\infty}^{\infty} a_{-i-j} z^i$$

for all j in \mathbb{Z} . Moreover, if $J : L^2 \to L^2$ is the reflection operator defined by $J(f(z)) = f(\overline{z})$, then we can see here that $S_{\varphi} = JM_{\varphi}$ and $M_{\varphi} = JS_{\varphi}$.

Motivated by Mark C. Ho, we here in this paper introduce the notion of slant Hankel operator on the space L^2 as follows.

The slant Hankel operator K_{φ} on L^2 is defined as

$$K_{\varphi}(z^j) = \sum_{i=-\infty}^{\infty} a_{-2i-j} z^i$$

for all j in \mathbb{Z} . That is, if $\langle \beta_{ij} \rangle$ is the matrix of K_{φ} with respect to the usual basis $\{z^i : i \in \mathbb{Z}\}$ of L^2 then $\beta_{ij} = a_{-2i-j}$. Therefore if A_{φ} is the slant Toeplitz operator then we can easily see that $A_{\varphi} = JK_{\varphi}$ and $K_{\varphi} = JA_{\varphi}$. Moreover, we also observe that J reduces W as

$$JW(z^{2n}) = Jz^n = \overline{z}^n$$
 $JW(z^{2n-1}) = J0 = 0$

and

$$WJz^{2n} = W\overline{z}^{2n} = \overline{z}^n \qquad \qquad WJz^{2n-1} = Wz^{-2n+1} = 0.$$

Also

$$JW^*(z^n) = Jz^{2n} = \overline{z}^{2n} = J(z^{2n}) = JW^*z^n$$
.

Hence

$$JW = WJ$$
 and $JW^* = W^*J$.

We begin with the following

Theorem 1. $K_{\varphi} = WS_{\varphi}$.

Proof. If S_{φ} is the Hankel operator on L^2 then

$$S_{\varphi}(z^j) = \sum_{i=-\infty}^{\infty} a_{-i-j} z^i.$$

Therefore,

$$WS_{\varphi}(z^j) = W(\sum_{i=-\infty}^{\infty} a_{-i-j}z^i) = \sum_{i=-\infty}^{\infty} a_{-2i-j}z^i = K_{\varphi}(z^j).$$

This is true for all j in \mathbb{Z} . Therefore we can conclude that $K_{\varphi} = WS_{\varphi}$. From here we can see that $K_{\varphi} = WS_{\varphi} = WJM_{\varphi} = JWM_{\varphi} = JA_{\varphi}$.

As a consequence of the above we can prove the following

Corollary 2. A slant Hankel operator K_{φ} with φ in L^{∞} is a bounded linear operator on L^2 with $||K_{\varphi}|| \leq ||\varphi||_{\infty}$.

Proof. Since $||K_{\varphi}|| = ||WS_{\varphi}|| = ||WJM_{\varphi}|| \le ||W|| ||J|| ||M_{\varphi}|| \le ||M_{\varphi}|| = ||\varphi||_{\infty}$. This completes the proof.

If we denote L_{φ} , the compression of K_{φ} on the space H^2 , then L_{φ} is defined as

$$L_{\varphi}f = PK_{\varphi}f$$

for all f in H^2 , where P is the orthogonal projection of L^2 onto H^2 . Equivalently

$$\begin{split} L_{\varphi} &= PK_{\varphi} \mid H^2 = PJA_{\varphi} \mid H^2 = PJWM_{\varphi} \mid H^2 \\ &= PWJM_{\varphi} \mid H^2 = PWS_{\varphi} \mid H^2 = WPS_{\varphi} \mid H^2 = WH_{\varphi} \,. \end{split}$$

That is $L_{\varphi} = WH_{\varphi}$, where H_{φ} is the Hankel operator on H^2 . If (β_{ij}) is the matrix of K_{φ} with respect to the usual basis $\{z^i : i \in \mathbb{Z}\}$ then this matrix is given by

(÷	÷	÷	÷	÷	÷	
	a_9	a_8	a_7	a_6	a_5	a_4	
	a_7	a_6	a_5	a_4	a_3	a_2	
	a_5	a_4	a_3	a_2	a_1	a_0	
	a_3	a_2	a_1	a_0	a_{-1}	a_{-2}	
	a_1	a_0	a_{-1}	a_{-2}	a_{-3}	a_{-4}	
	a_{-1}	a_{-2}	a_{-3}	a_{-4}	a_{-5}	a_{-6}	
	÷	÷	÷	÷	÷	÷)

The lower right quarter of the matrix is the matrix of L_{φ} . That is

$\int a_0$	a_{-1}	a_{-2})	
a_{-2}	a_{-3}	a_{-4}		
a_{-4}	a_{-5}	a_{-6}		•
(:	÷	÷		

We know obtain a characterization of slant Hankel operator as follows

Theorem 3. A bounded linear operator K on L^2 is a slant Hankel operator if and only if $M_{\overline{z}}K = KM_{z^2}$.

Proof. Let K be a slant Hankel operator. Then by definition $K = WS_{\varphi}$, for some φ in L^{∞} . Then,

$$\begin{split} M_{\overline{z}}K &= M_{\overline{z}}WS_{\varphi} = WM_{\overline{z}^2}S_{\varphi} = WM_{\overline{z}^2}JM_{\varphi} \\ &= WJM_{z^2}M_{\varphi} = WJM_{\varphi}M_{z^2} = WS_{\varphi}M_{z^2} = KM_{z^2} \,. \end{split}$$

Conversely, suppose that K satisfies $M_{\overline{z}}K = KM_{z^2}$. Let f be in L^2 and let $\sum_{i=-\infty}^{\infty} b_i z^i$ be its Fourier expansion. Then from the equation $M_{\overline{z}}K = KM_{z^2}$, we

get

$$\begin{split} K(f(\overline{z}^2)) &= K\Big(\sum_{i=-\infty}^{\infty} b_i \overline{z}^{2i}\Big) = \sum_{i=-\infty}^{\infty} b_i K M_{\overline{z}^{2i}}(1) \\ &= \sum_{i=-\infty}^{\infty} b_i M_{z^i} K(1) = \sum_{i=-\infty}^{\infty} b_i z^i K(1) = f(z) K(1) \end{split}$$

This implies that

$$||f(z)K(1)|| = ||K(f(\overline{z}^2))|| \le ||K|| ||f(\overline{z}^2)|| = ||K|| ||f(z)||$$

Let $\varphi_0 = K1$. Let $\epsilon > 0$ be any real number and $A_{\epsilon} = \{z : |\varphi_0(z)| > ||K|| + \epsilon\}$. Let $\chi_{A_{\epsilon}}$ denote the characteristic function of A_{ϵ} . Then

$$\|K(\chi_{A_{\epsilon}})\|^{2} = \int_{\mathbb{T}} |K(\chi_{A_{\epsilon}}(z))|^{2} d\mu = \int_{A_{\epsilon}} |K(1)|^{2} d\mu = \int_{A_{\epsilon}} |\varphi_{0}|^{2} d\mu$$

$$\geq (\|K\| + \epsilon)^{2} \mu(A_{\epsilon}) = (\|K\| + \epsilon)^{2} \|\chi_{A_{\epsilon}}\|^{2}.$$

Therefore if $\|\chi_{A_{\epsilon}}\| \neq 0$ then we get $\|K\| + \epsilon \leq \|K\|$, a contradiction. Thus $\|\chi_{A_{\epsilon}}\| = 0$ and $\mu(A_{\epsilon}) = 0$, where μ is the normalized Lebesgue measure on \mathbb{T} . This is true for all $\epsilon > 0$. Hence if $A = \{z : |\varphi_0| \geq \|K\|\}$ then $\mu(A) = 0$. Thus $|\varphi_0(z)| \leq \|K\|$ a.e. This implies that φ_0 is in L^{∞} . Again if we consider

$$K(\overline{z}f(\overline{z}^{2})) = K\left(\overline{z}\sum_{i=-\infty}^{\infty}b_{i}z^{-2i}\right) = K\left(\sum_{i=-\infty}^{\infty}b_{i}z^{-2i-1}\right)$$
$$= \sum_{i=-\infty}^{\infty}b_{i}KM_{z^{-2i}}M_{\overline{z}} = \sum_{i=-\infty}^{\infty}b_{i}M_{z^{i}}KM_{\overline{z}}$$
$$= \sum_{i=-\infty}^{\infty}b_{i}z^{i}K(\overline{z}) = f(z)K(\overline{z}).$$

So by the same arguments as above, we can see that $K\overline{z}$ is also bounded. Let $\varphi_1 = K\overline{z}$ and let $\varphi(z) = \varphi_0(\overline{z}^2) + z\varphi_1(\overline{z}^2)$. Since φ_0 and φ_1 are bounded, therefore φ is also bounded and hence is in L^{∞} . Now we will show that $K = WS_{\varphi}$. Let f be in L^2 , then f can be written as

$$f(z) = f_0(\overline{z}^2) + \overline{z}f_1(\overline{z}^2).$$

128

This implies that

$$\begin{split} WS_{\varphi}f &= WJM_{\varphi}f = WJ(\varphi f) = W(\varphi(\overline{z})f(\overline{z})) \\ &= W[(\varphi_0(z^2) + \overline{z}\varphi_1(z^2))(f_0(z^2) + zf_1(z^2))] \\ &= W[\varphi_0(z^2)f_0(z^2) + \varphi_1(z^2)f_1(z^2)] \\ &\quad \{ as \ W \ eliminates \ the \ odd \ powers \ of \ z \} \\ &= W[\varphi_0(z^2)f_0(z^2)] + W[\varphi_1(z^2)f_1(z^2)] = \varphi_0(z)f_0(z) + \varphi_1(z)f_1(z) \\ &= f_0(z)K1 + f_1(z)K\overline{z} = K(f_0(\overline{z}^2)) + K(\overline{z}f_1(\overline{z}^2)) \\ &= K(f_0(\overline{z}^2) + \overline{z}f_1(\overline{z}^2)) = Kf \,. \end{split}$$

Hence K is a slant Hankel operator. This completes the proof.

Corollary 4. The set of all slant Hankel operators is weakly closed and hence strongly closed.

Proof. Suppose that for each α , K_{α} is a slant Hankel operator and $K_{\alpha} \to K$ weakly, where $\{\alpha\}$ is a net. Then for all f, g in $L^2\langle K_{\alpha}f,g\rangle \to \langle Kf,g\rangle$. This implies that

$$\langle M_z K_\alpha M_{z^2} f, g \rangle = \langle K_\alpha z^2 f, \overline{z}g \rangle \to \langle K z^2 f, \overline{z}g \rangle = \langle M_z K M_{z^2} f, g \rangle$$

Since K_{φ} is a slant Hankel operator, therefore from its characterization, we have $M_z K_{\alpha} M_{z^2} = K_{\alpha}$ for each α . Thus $K = M_z K M_{z^2}$ and so K is slant Hankel operator. This completes the proof.

Definition : The slant Hankel matrix is defined as a two way infinite matrix (a_{ij}) such that

$$a_{i-1,j+2} = a_{ij} \,.$$

This definition gives the characterization of the slant Hankel operator K_{φ} in terms of its matrix as follows

A necessary and sufficient condition for a bounded linear operator on L^2 to be a slant Hankel operator is that its matrix (with respect to the usual basis $\{z^i : i \in \mathbb{Z}\}$) is a slant Hankel matrix.

The adjoint K_{φ}^* , of the operator K_{φ} , is defined by

$$K_{\varphi}^{*}(z^{j}) = \sum_{i=-\infty}^{\infty} \overline{a}_{-2j-i} z^{i}.$$

That is, $K_{\varphi}^* = JA_{\varphi(\overline{z})}^*$. Moreover if J is the reflection operator then $JK_{\varphi}^*(z^j) = \sum_{i=-\infty}^{\infty} \overline{a}_{-2j+i}z^i$ and therefore $WJK_{\varphi}^*(z^j) = \sum_{i=-\infty}^{\infty} \overline{a}_{-2j+2i}z^i$. That is the matrix of

 \square

 WJK_{φ}^{*} is given by

$$\begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \overline{a}_2 & \overline{a}_0 & \overline{a}_{-2} & \overline{a}_{-4} & \overline{a}_{-6} & \dots \\ \dots & \overline{a}_4 & \overline{a}_2 & \overline{a}_0 & \overline{a}_{-2} & \overline{a}_{-4} & \dots \\ \dots & \overline{a}_6 & \overline{a}_4 & \overline{a}_2 & \overline{a}_0 & \overline{a}_{-2} & \dots \\ \dots & \overline{a}_8 & \overline{a}_6 & \overline{a}_4 & \overline{a}_2 & \overline{a}_0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

which is constant on diagonals and therefore is the matrix of the multiplication operator M_{ψ} where $\psi = W(\overline{\varphi}(\overline{z}))$. This helps us in proving the following

Theorem 5. K_{φ} is compact if and only if $\varphi = 0$.

Proof. Let K_{φ} be compact, then K_{φ}^* is also compact. Since W and J are bounded linear operators, therefore WJK_{φ}^* is also compact. But $WJK_{\varphi}^* = W(\overline{\varphi}(\overline{z})) = M_{\psi}$ where $\psi = W(\overline{\varphi}(\overline{z}))$. This implies that M_{ψ} is compact and therefore $\langle \psi, z^n \rangle = 0$ for all n. That is

$$\langle \psi, z^n \rangle = \langle \overline{\varphi}(\overline{z}), W^* z^n \rangle = \langle \Sigma \overline{a}_i z^i, z^{2n} \rangle = \overline{a}_{2n} = 0.$$

On the other hand, since $K_{\varphi}M_{\overline{z}}$ is also compact and therefore

$$WJ(K_{\varphi}M_{\overline{z}})^* = WJ(JA_{\varphi}M_{\overline{z}})^* = WJ(JWM_{\varphi\overline{z}})^*$$
$$= WJ(K_{\varphi\overline{z}})^* = M_{\psi_0}.$$

where $\psi_0 = W(z\overline{\varphi}(\overline{z}))$, is also compact. This further yields that for each n in \mathbb{Z}

$$0 = \langle \psi_0, z^n \rangle = \langle W(\overline{\varphi}(\overline{z})z), z^n \rangle = \langle \overline{\varphi}(\overline{z})z, z^{2n} \rangle$$
$$= \left\langle \sum_{i=-\infty}^{\infty} \overline{a}_i z^{i+1}, z^{2n} \right\rangle = \left\langle \sum_{i=-\infty}^{\infty} \overline{a}_{i-1} z^i, z^{2n} \right\rangle = \overline{a}_{2n-1} \cdot \overline{a}_{2n$$

Thus $a_i = 0$ for all *i* which concludes that $\varphi = 0$. This completes the proof. \Box

The next result deals with the norm of K_{φ} as follows

Theorem 5. $||K_{\varphi}|| = ||A_{\varphi}|| = \sqrt{||W|\varphi|^2||_{\infty}}.$

Proof. Consider,

$$\begin{split} K_{\varphi}K_{\varphi}^{*} &= JA_{\varphi}(JA_{\varphi})^{*} = JWM_{\varphi}(JWM_{\varphi})^{*} = JWM_{\varphi}M_{\overline{\varphi}}W^{*}J^{*} \\ &= JWM_{|\varphi|^{2}}W^{*}J^{*} = WJ(JWM_{|\varphi|^{2}})^{*} = WJK_{|\varphi|^{2}}^{*} = M_{\psi} \end{split}$$

where $\psi = W(|\varphi|^2)$. It follows that

$$||K_{\varphi}||^{2} = ||K_{\varphi}K_{\varphi}^{*}|| = ||M_{\psi}|| = ||\psi||_{\infty} = ||W|\varphi|^{2}||_{\infty} = ||A_{\varphi}||^{2}.$$

This completes the proof.

2. Spectrum of K_{ω}

In [4] Mark C. Ho has proved that the spectrum of slant Toeplitz operator contains a closed disc, for any invertible φ in $L^{\infty}(\mathbb{T})$. The same is true for slant Hankel operator. We begin with the following

Lemma 6. If φ is invertible in L^{∞} , then $\sigma_p(K_{\varphi}) = \sigma_p(K_{\varphi(\overline{z}^2)})$, where $\sigma_p(K_{\varphi})$ denotes the point spectrum of K_{φ} .

Proof. Let $\lambda \in \sigma_p(K_{\varphi})$. Therefore there exists a non zero f in L^2 such that $K_{\varphi}f = \lambda f$. Consider $F = \varphi f$. Then

$$\begin{split} K_{\varphi(\overline{z}^2)}F &= K_{\varphi(\overline{z}^2)}\varphi f = JA_{\varphi(\overline{z}^2)}(\varphi f) = JWM_{\varphi(\overline{z}^2)}\varphi f = JM_{\varphi(\overline{z})}WM_{\varphi}f \\ &= M_{\varphi(z)}JA_{\varphi}f = \varphi(z)K_{\varphi}(f) = \varphi\lambda f = \lambda\varphi f = \lambda F \,. \end{split}$$

Since φ is invertible and $f \neq 0$, therefore $F \neq 0$ and hence $\lambda \in \sigma_p(K_{\varphi(\overline{z}^2)})$. This implies that $\sigma_p(K_{\varphi}) \subset \sigma_p(K_{\varphi(\overline{z}^2)})$.

Conversely, let $\mu \in \sigma_p(K_{\varphi(\overline{z}^2)})$. Thus there exists some $0 \neq g$ in L^2 such that $K_{\varphi(\overline{z}^2)}g = \mu g$. Let $G = \varphi^{-1}g$. This gives that

$$\begin{split} K_{\varphi}G &= K_{\varphi}(\varphi^{-1}g) = JA_{\varphi}(\varphi^{-1}g) = JWM_{\varphi}(\varphi^{-1}g) = WJ(\varphi\varphi^{-1}g) = WJg \\ &= \varphi^{-1}\varphi WJg = \varphi^{-1}WJ\varphi(\overline{z}^2)g = \varphi^{-1}K_{\varphi(\overline{z}^2)}g \\ &= \varphi^{-1}\mu g = \mu\varphi^{-1}g = \mu G \,. \end{split}$$

By the same reasons φ is invertible, $g \neq 0$, we must have $G \neq 0$ and therefore the result follows.

Lemma 7. $\sigma(K_{\varphi}) = \sigma(K_{\varphi(\overline{z}^2)})$ for any φ in L^{∞} , where $\sigma(K_{\varphi})$ denotes the spectrum of K_{φ} .

Proof. We know the if A and B are two bounded linear operators then

$$\sigma(AB) \cup \{0\} = \sigma(BA) \cup \{0\}.$$

Consider

$$K_{\varphi}^* = (JA_{\varphi})^* = A_{\varphi}^*J^* = M_{\overline{\varphi}}W^*J^* = M_{\overline{\varphi}}(JW)^*.$$

Therefore,

$$\sigma(K_{\varphi}^*) \cup \{0\} = \sigma\big[(M_{\overline{\varphi}})(JW)^*] \cup \{0\} = \sigma\big[(JW)^*(M_{\overline{\varphi}})\big] \cup \{0\}$$

Again since,

$$(JW)^* M_{\overline{\varphi}} = W^* J^* M_{\overline{\varphi}(z)} = W^* M_{\overline{\varphi}(\overline{z})} J^* = M_{\overline{\varphi}(\overline{z}^2)} W^* J^*$$
$$= (WM_{\varphi(\overline{z}^2)})^* J^* = A_{\varphi(\overline{z}^2)}^* J^* = K_{\varphi(\overline{z}^2)}^*.$$

So,

$$\sigma(K_{\varphi}^*) \cup \{0\} = \sigma(K_{\varphi(\overline{z}^2)}) \cup \{0\}.$$

This gives that

$$\sigma(K_{\varphi}) \cup \{0\} = \overline{\sigma(K_{\varphi}^*)} \cup \{0\} = \overline{\sigma(K_{\varphi(\overline{z}^2)}^*)} \cup \{0\} = \sigma(K_{\varphi(\overline{z}^2)}) \cup \{0\}$$

We assert the $0 \in \sigma_p(K_{\varphi(\overline{z}^2)})$. We can see that $R(W^*) =$ the range of $W^* = P_e(L^2) =$ the closed linear span of $\{z^{2n} : n \in \mathbb{Z}\}$ in $L^2 \neq L^2$. Hence W^* is

not onto. This gives that $\overline{R(W^*J^*M_{\overline{\varphi}})} \neq L^2$. As $W^*L^*M_{\overline{\varphi}} = K^*_{\varphi(\overline{z}^2)}$, therefore $\ker K_{\varphi(\overline{z}^2)} \neq 0$. This implies that $0 \in \sigma_p(K_{\varphi(\overline{z}^2)})$. If φ is invertible in L^{∞} , then by the above Lemma $0 \in \sigma_p(K_{\varphi})$ and we are done.

Let φ be not invertible in L^{∞} . As the set $\{\varphi \in L^{\infty} : \varphi^{-1} \in L^{\infty}\}$ is dense in L^{∞} [4], therefore we can have a sequence $\{\varphi_n\}$ of invertible functions such that $\|\varphi_n - \varphi\| \to 0$ as $n \to \infty$. Since φ_n is invertible for each n, therefore $0 \in \sigma_p(K_{\varphi_n})$ for each n. Hence for each n we can find $f_n \neq 0$ such that $K_{\varphi_n} f_n = 0$. Without loss of generality, we can assume that $\|f_n\| = 1$. Now

$$\begin{aligned} \|K_{\varphi}f_n\| &= \|K_{\varphi}f_n - K_{\varphi_n}f_n + K_{\varphi_n}f_n\| \\ &\leq \|K_{\varphi}f_n - K_{\varphi_n}f_n\| + \|K_{\varphi_n}f_n\| \leq \|\varphi - \varphi_n\| \to 0 \end{aligned}$$

as $n \to \infty$. Hence $0 \in \Pi(K_{\varphi})$, the approximate point spectrum of K_{φ} and hence is in the spectrum of K_{φ} . Also 0 is in the approximate point spectrum of $K_{\varphi(\overline{z}^2)}$. This completes the proof.

Theorem 8. The spectrum of K_{φ} contains a closed disc, for any invertible φ in $L^{\infty}(\mathbb{T})$.

Proof. Let
$$\lambda \neq 0$$
 and suppose that $K^*_{\varphi(\overline{z}^2)} - \lambda$ is onto. For f in $L^2(\mathbb{T})$, we have

$$\begin{split} (K^*_{\varphi(\overline{z}^2)} - \lambda)f &= K^*_{\varphi(\overline{z}^2)}f - \lambda f = M_{\overline{\varphi}(\overline{z}^2)}W^*J^*f - \lambda f \\ &= \overline{\varphi}(\overline{z}^2)f(\overline{z}^2) - \lambda(P_ef \oplus P_0f) = (W^*J^*(\overline{\varphi}f) - \lambda P_ef) \oplus (-\lambda P_0f) \\ &= (J^*W^*(\overline{\varphi}f) - \lambda P_ef) \oplus (-\lambda P_0f) = (J^*W^*\overline{\varphi} - \lambda P_e)f \oplus (-\lambda P_0f) \\ &= \lambda J^*W^*M_{\overline{\varphi}}(\lambda^{-1} - M_{\overline{\varphi}^{-1}}JW)f \oplus (-\lambda P_0f) \end{split}$$

where $P_0 = I - P_e$, that is $P_0 = \{z^{2k-1} : k \in \mathbb{Z}\}$. Let $0 \neq g_0$ be in $P_0(L^2)$. Since $K^*_{\varphi(\overline{z}^2)} - \lambda$ is onto, there exists a non zero vector f in $L^2(\mathbb{T})$ such that $(K^*_{\varphi(\overline{z}^2)} - \lambda)f = g_0$. That is,

$$\lambda J^* W^* M_{\overline{\varphi}}(\lambda^{-1} - M_{\overline{\varphi}^{-1}}JW) \oplus (-\lambda P_0 f) = g_0$$

Since $g_0 \in P_0(L^2)$ and $g_0 \neq 0$, therefore, we must have

$$\lambda J^* W^* M_{\overline{\varphi}} (\lambda^{-1} - M_{\overline{\varphi}-1} J W) f = 0.$$

Since $\lambda \neq 0$, W^* and J^* are isometries and $M_{\overline{\varphi}}$ being invertible, this implies that

$$(\lambda^{-1} - M_{\overline{\varphi}^{-1}}JW)f = 0.$$

Since $M_{\overline{\varphi}^{-1}}JW = K_{\overline{\varphi}^{-1}(z^2)}$, therefore we have

$$(\lambda^{-1} - K_{\overline{\varphi}^{-1}(z^2)})f = 0.$$

Thus $\lambda^{-1} \in \sigma_p(K_{\overline{\varphi}^{-1}(\overline{z}^2)})$. Now let $\lambda \in \rho(K^*_{\varphi(\overline{z}^2)})$, the resolvent of $K^*_{\varphi(\overline{z}^2)}$, the operator $K^*_{\varphi(\overline{z}^2)} - \lambda$ is invertible and hence onto, therefore, $\lambda^{-1} \in \sigma_p(K_{\overline{\varphi}^{-1}(\overline{z}^2)})$. That is

$$D = \{\lambda^{-1} : \lambda \in \rho(K^*_{\varphi(\overline{z}^2)})\} \subseteq \sigma_p(K_{\overline{\varphi}^{-1}(\overline{z}^2)})$$

By Lemma 7, we get $D \subseteq \sigma_p(K_{\overline{\varphi}^{-1}})$. So replacing $\overline{\varphi}^{-1}$ by φ , we get that $D \subseteq \sigma_p(K_{\varphi}) \subset \sigma(K_{\varphi})$ and therefore we have proved that for any invertible φ in L^{∞} , the

spectrum of K_{φ} contains a disc consisting of eigenvalues of K_{φ} . Since spectrum of any operator is compact, it follows that $\sigma(K_{\varphi})$ contains a closed disc.

Remark 1. The radius of the closed disc contained in $\sigma(K_{\varphi})$ is $(r(K_{\overline{\varphi}-1}))^{-1}$, where r(A) denote the spectral radius of the operator A. For,

$$\max\{|\lambda^{-1}|:\lambda\in\rho(K^*_{\varphi(\overline{z}^2)})\} = \left[\{|\lambda|:\lambda\in\rho(K^*_{\varphi(\overline{z}^2)})\}\right]^{-1}$$
$$= \left[r(K^*_{\varphi(\overline{z}^2)})\right]^{-1} = \left[r(K_{\varphi(\overline{z}^2)})\right]^{-1}$$

Replacing φ by φ^{-1} we get that the radius of the disc is $\left(r(K_{\varphi(\overline{z}^2)})\right)^{-1}$ and therefore

$$r(K_{\varphi}) \ge \left(r(K_{\overline{\varphi}^{-1}})\right)^{-1}.$$

References

- Arora, S. C. and Ruchika Batra, On Slant Hankel Operators, to appear in Bull. Calcutta Math. Soc.
- Brown, A. and Halmos, P. R., Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89–102.
- [3] Halmos, P. R., Hilbert Space Problem Book, Springer Verlag, New York, Heidelberg-Berlin, 1979.
- [4] Ho, M. C., Properties of Slant Toeplitz operators, Indiana Univ. Math. J. 45 (1996), 843– 862.

S. C. ARORA AND RUCHIKA BATRA DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI DELHI - 110 007, INDIA *E-mail:* sc_arora1@yahoo.co.in ruchika_masi1@yahoo.co.in

M. P. Singh Department of Mathematics, University of Delhi Delhi - 110 007, India