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Časopis pro p stování matematiky, roč. 105 (1980), Praha 

EXPRESSING RATIONALS AS A SUM OF A SMALL NUMBER 
OF UNIT FRACTIONS 

WILLIAM A. WEBB, Pullman 

(Received May 11, 1977) 

I. INTRODUCTION 

For a given rational number ajb, we wish to consider the solvability of the equation 

n\ a 1 1 1 
(1) = _ + - + ... + -

u Xj X2 Xn 

where the xt are integers (not necessarily positive). For a fixed positive integer a, 
let L = L(a) be the smallest value of n for which (l) is solvable for all sufficiently 
large integers b. 

Even if the xt are required to be positive, it is clear that L ^ a. Although a well-
known conjecture of SCHINZEL [2] is that L = 3 for all a ^ 3, no one has succeeded 
in finding an improvement on the trivial estimate for even one value of a. 

A similar result is conjectured for the case under discussion, where the xt may be 
negative. This problem has proved to be somewhat easier, and it is known that L = 3 
for 3 < a < 35. This result can be used to show that 

LŠ 3 a 
35 

+ 1 

where [ ] is the greatest integer function. Also, some minor improvements of this 
estimate are fairly easy to obtain. 

The principal objective of this paper is to obtain a significantly better upper bound 
for L; namely one of order log a. 

II. APPROXIMATIONS USING SMALL NUMERATORS 

Before proving the estimate mentioned above, we will need some preliminary 
results. These results, concerning Farey fractions and approximations using small 
numerators, are also interesting in their own right. 
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Most problems in rational approximation involve the existence of a good approxi
mation c\d to some number, where d is small. We will be interested in approximating, 
or more precisely, in decomposing a given rational, using fractions with small numer
ators. 

Let a\b be a reduced rational number, 0 < a\b < 1. We will approximate ajb 
using a sequence of fractions a0\b0 = a\b, ax\bu a2\b2 . . . , to be defined below. 

Let 3fn denote the Farey series of order n. We will also use the following special 
notation. Write the triple T = (ij k) to mean a{\bi < a}\bj < ak\bk are three con
secutive elements of %bj. Note that this implies at + ak = aj and bt + bk = bj9 

Also, write the five-tuple F = (ij k : x y) to mean T = (ij k) and a = xat + yak. 
b = xbt + ybk. 

We now define the sequence {a*/bj by specifying successive triples Tm.Let T% = 
= (1 0 2), so that a1\bl < a0\b0 < a2\b2 are consecutive elements of %bo = gf6. 
Note that Fx = ( 1 0 2: 1 1). 

Now, given a triple Tm_2 = (ij k) we define Tm^1 by choosing am\bm such that 

/m~1 - \(mi 
m) if bi < b, 
k) if bi > bk 

k > 

Note that the only case in which bt = bkis when (ij k) represents ~ \ \, at which 
point the sequence must terminate anyway. The fraction am\bm is the next term in 
the sequence. 

Lemma 1. If Fm_2 = (ij k: x y) then Fm_1 = (m i k: xx + y) or Fm_t = 
(i km: x + y y). 

Proof. By definition of the sequence {a,/fcj we know that either Tm_1 = (m i k) 
or Tm_1 = (i k m). In the former case a = xat + yak = x(am + ak) + yak = 
= xam + (x + y) ak. In the later case a = xat + yak = xat + y(at + am) = 
— (x + y) at + yam. Similar calculations hold for b. 

Lemma 2. / / Fn = (ij k: x y) then abt — ba{ = y and abk — bak = — x. 

Proof. Use induction on n. F± = (1 0 2: 1 1) and abx - bax = 1, ab2 - ba2 = 
= - 1 by the well-known property of gfc. [1, Theorem 28] 

Now suppose the result is true for Fm-2 = (ij k: x y). If Fm_i = (mi k: xx + y) 
then abm - bam = a(bt - bk) - b(a{ - ak) = (afef - ba{) - (aftk - bak) = y + x 
by the induction hypothesis. (abk — bak = — x following immediately from the 
induction hypothesis.) A similar calculation holds if Fm_i = (i k m: x + y y). 
Note that the conclusion of Lemma 2 can be witten as: 

a =__ + ___ a
 =

 ak x 

b bt bbt b bk bbk 
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In the above procedure it is clear that x + y is monotonically increasing, and the 
sequence does not terminate until x + y = b > a. Thus, for any real number X, 
1 < X < a, we eventually encounter an Fm where x < X, y < X, and x + y _t X. 
When this occurs we must have either at < a\X or ak < a/A, for the following reasons. 
Assume at _% a\X and ak _i a\X. Then a = xat + yak _\ (x + y) a\X _i a with 
strict inequality (and hence a contradiction) if at > a\X or ak > a\X or x + y > X. 
Also, if at = ak = a/A and x + y = A then by Lemma 2, A = x + )> = bak — abfc + 
+ ab( — bat = a(b; — bk). So bf — bk = A/a and thus X\a and a/A are both integers 
which implies a = A contradicting the fact that A < a. 

Theorem 1. For 0 < ajb < 1 and every integer n > 1, fhere exisf integers xi9 z, 
such that 

f = X ^ and IJCJ <a1/n. 
b t=i Zj 

Proof. Let A = a1/n. By the above remarks 

a = x1 + A_ w h e r e ^ ^ < ai/n a n d ^ < ^ = a(n_1)/n ^ 
6 z t Bx 

Similarly, 

ill = ^ + Al w h e r e |X2| < al/n a n (j ^ 2 < A ^ A < ajX2 = a(n-2)/n ^ 
J5j Z2 -B2 

Proceeding in this manner, we obtain in general 

- = — + ... + xrzr + —- where IxJ < a1/n and 
b zx Br ' '" 

Ar < ^r_i/A < ... < a/Af < a(l,-r)/n. 

Letting r = n — 1, we obtain the desired result. 
Professor M. J. KNIGHT, in a private communication, has noted that Theorem 1 

can also be proved using geometry of numbers. 

III. AN ESTIMATE FOR L 

We are now ready to state and prove our principal result. 

Theorem 2. For a given positive integer a and all integers b sufficiently large, 
the equation (1) is solvable in integers xi5 where n = 3 log a/log 36 + 3. 

Proof. Following the same procedure as in the proof of Theorem 1, with X = 36, 
we obtain 

-\ = £ h + ~s where \yt\ < 36 and As < a/36*. 
b i = i Z j Bs 
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Choose s so that 36s <£ a < 36*+1. Then 

- = V ^ where \y(\ < 36 . 
b .= i zi 

By [3, Theorem 4] each 

й„A + -L + ± 

so L ^ 3(5 + 1). The condition that b is sufficiently large guarantees that the zt are 
sufficiently large also. We now note that s ^ log a/log 36, which completes the proof 
of the theorem. We also note that for large values of a, n ^ 3 log a/log 36 -f 3 < 
< log a where log denotes the natural logarithm. 

IV. CONCLUDING REMARKS 

The bound on L given in Theorem 2 is still a long way from the conjectured result, 
so an improved estimate would be of interest. The same conjecture suggests that the 
result in Theorem 1 is probably not the best possible when n ^ 3. However, we do 
have the following result when n = 2. 

Theorem. 3 For 0 < ajb < 1 there exist integers xi9 x2, zi9 z2 such that 

a X\ x ? , 1 1 / 

_ = _i + _i an4 \x\ < J a . 

b zi z2 

Moreover, the bound on the \xt\ is the best possible. 
Proof. By Theorem 1, we need only prove the last statement. 

Let a = (n -f l ) 2 — 1 = n2 + In and let b be a prime such that b = n + 1 (mod a). 
Infinitely many such primes exist since (n + 1, a) = 1. 

By Theorem 1 

(2) - = ^ + ^ where |x,| = n . 
b zt z2 

Now, assume (2) holds where \XJ\ <* n — 1. Then by Theorem 1' of [4] there exist 
di9 d2 J b such that x ^ + x2d2 = ka for some integer fc 4= 0. Since b is prime, its 
only divisors are ± 1 , ±b. If j d ^ l = 1 or fe2 then xidi + x2d2 = ka is possible 
only for k = 0, which is the excluded case. 
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Thus it suffices to show that Xj + bx2 == xx + (n + 1) x2 =j= 0 (mod n2 + 2n) 

for all ĴCjJ _ n — 1 except xt = x2 = 0. But this follows immediately from the fact 

that 

2 = |JCX + (n + 1) x 2 | ^ n2 + n - 2 . 

It would still be quite interesting to know if Theorem 1 can be improved for 

n > 3. 
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