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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON A BOUNDARY VALUE PROBLEM OF THE FOURTH ORDER 

VALTER SEDA, Bratislava 

(Received October 17, 1978) 

In the paper a sufficient condition for the existence of a unique solution to an 
arbitrary interpolation problem of the fourth order is given. The n-parameter families 
theory is used in the proof. 

Consider a differential equation 

(1) x ( 4 ) = f(t, x, xf, x", x'") 

where f: (a, b) x K4 -> R(— oo < a < b < oo) satisfies the assumptions 

(A) f is continuous on (a, b) x K4; 
(B) all solutions of (1) can be extended to (a, b); 
(C) for any a < tx < t2 < f3 < f4 < b and any AkeR (k = 1, 2, 3, 4) there 

exists at most one solution of (1), 

(2) x(tk) = Ak (fc = l , 2 , 3 , 4 ) ; 

(D) there exists a K > 0 such that 

f(t9x,x',x",x"')^0 (f(t,x,x',x",x"')^0) • 

for all (t, x, x', x", x"') e (a, b) x K4 such that x" = K, x'" = K (x" = - K , 
x'" = - K ) . 

Under these hypotheses the following existence statement will be proved. 

Theorem 1. Assume that (1) satisfies conditions (A) —(D). Then given any a < 
< *! < t2 < t3 < t4 < b and any Ak (k = 1, ..., 4), the BVP (1), (2) has a unique 
solution. 

The p r o o f will be based on the n-parameter families theory developed by Hartman 
in [2] as well as on a result by Klaasen [5]. The results obtained have been put 
together in [3] by Jackson and in [6] by the author. For the special case n = 4 they 
will be stated here as 
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Lemma 1 (HARTMAN, KLAASEN). Suppose that (1) satisfies conditions (A)- (C) 
and the compactness condition 

(E) if [c, d] is a compact subinterval of (a, b) and {xp} is a sequence of solutions 
0/(1) which is uniformly bounded on [c, d], then there is a subsequence {xp(x^\ 
such that {xp

l(r)} converges uniformly on [c, d]for 0 :g i ^ 3. 

Then given any a < tx < ...tA < b and any Ak (k = 1, . . . ,4) , there exists 
unique solution x of the problem (1), (2). 

Our aim is to show that assumptions (A) —(D) imply the hypotheses of Lemma 1 
which proves Theorem 1. The proof will consist of a chain of lemmas. The first of 
them gives a result in the special case n = 4 proved by Jackson for arbitrary n in 
[3, p. 90]. 

Lemma 2 (JACKSON). Assume that the differential equation (1) satisfies hypotheses 
(A) —(C). Then, if [c, d] is a compact subinterval of (a, b) and {xp} is a sequence 
of solutions of(l) which is uniformly bounded on [c, d], it follows that the sequence 
{Vc(xp)} of total variations of the functions xp on [c, d] is bounded. 

Lemma 3. Suppose that (1) satisfies conditions (A) and (C). Then to any M > 0, 
a0 > 0 and [c, d] c (a, b) there exists a 3 > 0, 3 = 3(M, a0, [c, d]) such that for 
any solution x of (1) existing on [c, d] with \x(t)\ :_ M for each t e [c, d] the fol
lowing implication holds: 

If there are four points c <£ tt < t2 < t3 < tA ^ d at which 

(3) *(**) = M . + &1 (fc = l , . . . , 4 ) 

and t4 — tx < 3, \ax\ ^ a0, bt is arbitrary, then 

(4) |x'(0| = *o + 1 , |*"(0| = 1 > |*'"W| = 1 on [h, U] . 

Proof. By (C), there exists at most one solution of the BVP (l), (3). Using the 
Schauder Fixed Point Theorem, a solution y of (l), (3) will be found which satisfies 
(4) when t4 — tt < 3 with a suitable 3 > 0. 

Let Q = [c, d] x [ - M - 1, M + 1] x [ - a 0 - 1, a0 + 1] x [ -1 ,1] x 
x [ -1 ,1] and let K = max \f(t, x, x', x", xff,)\ on Q. Clearly K depends on M, a0 

and [c, d]. The solution x of (1), (3) can be written in the form 

(5) x(t) = att + bt + f 4G(t, s) / [ s , x(s), . . . , x"[(s)] ds (* e [^ *4]) , 

where G is the Green function of the problem x(4> = 0, 

(2') *(>*) = 0 , fe = l , . . . ) 4 , 
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Consider the space C{3)([ti9 f4]) endowed with the norm ||x|| = 
= max { max |x(k)(*)|} and a closed, convex and bounded subset S = {x e 

fc = 0 , l , 2 , 3 te{tt,t4] 

e C™([tl9 t4]) : \x(t)\ = M + 1, \x'(t)\ = a0 + 1, |x"(f)| = 1, |x'"(0| = 1}. In view 
of Lemma 2, [7], the operator T: C{3)([ti914~]) -> C{3)([tt, *4]) determined by the 
right-hand side of (5) is continuous and compact. Let x e S. Then T(x) (t) = axt + 
+ bi + in G(f> s)f[s> *{s), •••> *'"(*)] ds = att + bx + w(t). Since w e C(4)([fA, *4]) 
and satisfies (2'), Lemma 8.7 [4, p. 145] implies \u{k)(t)\ = (t4 - t^'^ Kj(4 - k)! 
(t e [f1? *4] , fc = 0, 1, 2, 3). Hence if 5 = min (1, 1/K), *4 - tt = 5, then T(S) <= S 
and thus there exists a solution j / of the problem (l), (3) which lies in S and hence 
satisfies (4). By (C), x(t) = y(t) in [tl9 i>4] which completes the proof. 

Lemma 4. Let fc, 1 g fc = 3, be a natural number, K > 0 a real number, x e 
e C(fc)([c, d]) such that \x(k)(t)\ = Kfor all t e [c, d]. 

Then the total variation Vd(x) of x in [c, d] satisfies the relations 

(6) Vc
d(x) = K(d - c) *f fc = 1 

(7) V<?(x) = ~ (d - c)2 for fc = 2 

and 

V'{x)-^6{d~Cf f°r k = 3-

Proof. Since V<?( —x) = V/(x), only the case 

(8) x(k)(0 = K in [c,d~] 

will be considered. (6) is clear. If x satisfies (8) for k = 2, then x' can have at most 
one zero in [c, d]. If x'(*0) = 0, then x'(t) = K(t — f0) for f0 = * ^ d as well as 
x'(t) = K(f - t0) for c = t <, t0 which gives |x'(f)| = K|f - f0| in [c, d] and thus 
Vc

d(x) = \d
c |x'(*)| d* = K[(t0 - cf + (d - *0)

2]/2 = K(d - c)2/4. If x'(t) > 0 in 
[c, d], then x'(t) = x'(c) + K(* - c) and hence V/(x) = K(d - c)2/2. In the case 
x'(t) < 0 in [c, d] the inequality x'(f) = x'(d) + K(* - d) implies Vc

d(x) = 

^ K(d — c)2/2. Thus (7) is proved to be true. 
Consider now the case fc = 3. Suppose first that there is a tQ e [c, d] such that 

x"(t0) = 0. Then, in view of (8), 

(9) x"(t) = K(t - r0) for tQ^t^d and **(*) = K(t - f0) if 

c = t = *0 . 
The following subcases may arise: 

a) x'(t0) = 0. Then x'(t) = K(t - f0)
2/2 in [t0, d] and V^x) = K(d - *0)

3/6 
while x'(t) = K(* - r0)

2/2 in [c, *0] which implies Vc
f0(x) = K(f0 - c)3/6. Thus 
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Vc(x) = K[i(d — t0)
3 + i(t0 — c)3]/3 which is, in virtue of the property of Mt(x, a) 

[1, p. 30], greater or equal to K(d - c)3/24. 
b) x'(t) < 0 in [c, d]. Then using (9), we get x'(t) = x'(c) + K(t - c)(t + c -

- 2f0)/2 = K(* - c) (t + c - 2f0)/2 in [c, f0] and Vc'°(x) = K(f0 - c)3/3. In [t0, d] 
we have x'(t) = K(* - d) (* + d - 2*0)/2 and Vd(x) = K(d - f0)

3/3. Then Vd(x) = 
= fK[l(d - f0)

3 + i(r0 - c)3] = K(d - c)3/12. 
c) xf(t0) < 0 and there exist ct and dl5 c ^ cx < f0 < dx = d, such that x'(t) < 0 

in (cl9 dx), .x'(ci) = x'(dx) = 0 and x'(t) > 0 in [c, cx) and (dx, d]. Then, by the result 
of the case b), 

(io) v!;(x) z | [(d, - t0f + (t0 - Clf] 

is true. In [c, c j we have x'(t) = x'(ct) + JCl x"(s) ds = K[(f - t0)
2 — 

- (ci - hfljl = K(f - cx) (r + cx - 2*0)/2. Therefore Vc
Cl(x) = K(cx - c)3/6. 

In [dl5 d] we come to the inequality x'(t) = K\_(t — f0)
2 — (dx — *0)

2]/2 which 
gives V/.(x) ;= K(d — di)3/6. The last inequalities together with (10) lead to the 
result 

Vc
d(x) = K[i(c! - C)3 + ^ ~ *0)3 + i(*0 - C,)3 + i(d - ^l)3] ^ 

= K[i(c, - c) + i(dx - t0) + i(f0 - ct) + £(<* - ^i)]3 = 

= — ( d ~ c ) 3 . 
216v y 

If x"(t) > 0 in [c, d], then instead of (9) we have x"(t) = K(t - c) for all t e [c, d] 
and again we have three cases a), b), c), where t0 is replaced by c. Thus in the case a) 
we come to the inequality Vc(x) ^ K(d — c)3/6, in the case b) we have Vc

d(x) ^ 
= K(d - c)3/3. The case c) implies that Vc

d(x) = K(dx - c)3/3 + K(d - dA)3/6 = 
= iK[§(di - c)3 + i(d - dA)3]. When *"(*) < 0, then t0 is replaced by d and, 
in view of the symmetry of the results obtained, we come to the same inequalities. 
Thus the lemma is proved. 

Proof of Theorem 1. Suppose {xp} is a sequence of solutions of (1) which is 
uniformly bounded on [c, d], say by a constant M. Then, by Lemma 2, the sequence 
{Vc(xp)} is bounded. 

3 

Two cases may occur. Either lim £ |*pfc)(0| = °° unif° rmly o n [c> d] is not true 
p-+oofc-=0 

and then the Kamke Convergence Theorem can be applied in order to complete the 
3 

proof of the theorem, or lim ]T |xp
fc)(*)| = oo uniformly on [c, d]. This is equivalent to 

p->oo k = 0 

(11) lim max |xp
k)(*)| — °° uniformly on [c, d] . 

p-*co fc = 0 , l , 2 , 3 

We shall show that (11) leads to contradiction with the boundedness of {Vc(xp)}. 
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Consider Kx _ 2K where K is given in hypothesis (D). Then, by (11), there exists 
a P > 0 such that for all p > P and all t e [c, d]9 

(12) max \xf\t)\ > Kt . 
fc=l,2,3 

Fix a p > P and consider the set St = {t e [c, d] : \xp(t)\ > KJ. If St * 0, then the 
components of Sj are intervals which are open with the possible exception of those 
containing c or d. If there existed infinitely many components of Sl9 then there 
would exist a point cx e [c, d] which is a limit point of the sequence of endpoints 
of the components considered and at the same time of local minimizers and local 
maximizers of x'p which gives ^(cj)! = Kl9 x'p(cx) = 0, Xp(cx) = 0. This contradicts 
(12) and hence there exists only a finite number of intervals of Sv 

Sx is open in [c, d]9 thus [c, d] — St is closed. We add to Sx all one-point com
ponents of [c, d] — Si. Then Sx remains open. Consider the set S2 = {t e [c, d] — 
— Sx : |*p(0| > K-i}- ^2 1s open in the closed set [c, d] — S1. Suppose there are 
infinitely many components of S2. Then there exists a limit point c2 of the endpoints 
of the components of S2 such that |*p(c2)| = Kl9 x'p(c2) = 0 and hence (12) implies 
that |*p(c2)| > Kx which contradicts the fact that St is open. Therefore there exist 
only finitely many components of S2 . S2 is open in [c, d] — S± and hence [c, d] — 
— Si — S2 is closed. It will remain closed when all one-point components of this 
set are added to S2. Then (12) gives that S3 = {te [c, d] - Sx - S2 : |*p(0| > 
> KJ = [c, d] — Sx — S2. Since Sl9 S2 consist of finitely many intervals, the same 
is true about S3. 

The consecutive intervals (components) of Sl9 S2 and S3 are displaced by the fol
lowing rules: 

1. If an interval ix(i2) from SX(S2) is followed by an interval i2(i3) from S2(S3)9 

then the sign of x"p(x"p) in i2(i3) is different from the sign of x'p(x"p) in ix(i2). 
2. If an interval i2(i3) from S2(S3) is followed by an interval J1(I2) from S^S^, 

then the sign of x'p(x"p) in ii(i2) is the same as that of x"p(x"p') in i2(i3). 
These two rules are based on the meaning of the sign of the derivative. 
3. If ii c Si is neither the first nor the last interval (briefly i t is an ordinary 

interval) of the system of all components of Sl9 S2, S3, then x'p attains its local 
extremum in ix. 

The proof follows from the fact that x'p has the same value at both end points of i±. 
4. If an ordinary interval i t a Sx is followed by an interval i3 c S3 and the sign 

of x'p in i3 is different from the sign of x'p in il9 then i3 is followed by an i2 c S2 

if there exists an interval following i3. 
The proof is based on the monotonicity of the integral. 
Assumption (D) implies 
5. If an interval i3 c S3 is followed by an interval i2 c S2, then the latter can 

be followed only by an interval ix c Sx which is then the last interval in the system 
of components of Sl9 S2, S3. 
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6. If an interval it c Sx is followed by an interval i3 c S3 and this in turn is 
followed by an interval i* a Sx and the sign s of xp in ii9 i* is the same as the sign 
of xp in j 3 , then in4he case e = 1 (e = — 1) xp must possess a unique local minimum 
at t0 in J3 (a unique local maximum at t0 in i3). Denote by tx the endpoint of i3. 
Hence *;(*,.) > Kl9 x'p(tt) = K, if s = 1 and x";(tx) < -Ki9 x'p(tx) = -Kx if 
£ a= — 1. Three cases may occur: 

(a) x;(*0) = 0 (jc;(r0) = 0) if s = 1 (« = -1) . 
(b) 0 < x'p(t0) < Kx\2 (0 > Xp(t0) > -K i /2) when e = 1 (s = -1) . Suppose 

now that xjfo) = Kx\2 (x"p(tx) = -K t /2) . Since x";(t) > Kx in i3 and x"p(t0) = 0, 
it is 0 g *;(f) = KJ2 in [f0, r j . In the case s = - 1 we come to 0 = *;(f) = 

= -.Kx/2. Therefore 

*i/2 < *;('i) - *#o) ^ Kx(tx - t0)\2 

( - K J 2 > x'p(tx) - x;(r0) = - K ^ - f0)/2 

and hence ti — t0 > 1 in both cases e = ±1 . 
On the other hand, 

J-i/2 is *£(.-.) - *;(.<>) ^! . . (» . - r0) 

( -K./2 ^ *;(..) - *;(.„) g -.*;.(.. - g ) 

which gives tx — f0 S i which is a contradiction. 
Thus, if 0 < x;j)0) < Kx\2 (0 > *;(*0) > -Ki/2), then x"p(tx) > Kx\2 (x"p(tx) < 

< -Kj/2) and since Kx\2 = K (-KJ2 = - K ) and xj(tx) > Kx (x';(tx) < ~KX)9 

assumption (D) implies that i* is the last interval in the system of all components 
of SX,S29S3. 

(c) Kt\2 S xP(t0) ( - j K i /2 ^ *;('o)) implies that the contribution of the set 
I'I u i3 u i* to Vc(xp) is 

VhuhxjtAxp) = y K ' i u *3 u ' ? )> 

where 1*(jf) means the length of the interval j . 
7. If the intervals ix c Sx, i2 e S2, i3 c= S3, i* c Sx follow in this order and the 

sign s of xp in i* is the same as the sign of x"p' in i3, then xp attains its unique local 
minimum for e = 1 (a unique local maximum for s = — 1) in i2 u i3 at a point 
'o e *V With respect to monotonicity of the integral, the case (a) from 6 cannot 
occur (otherwise i3 would be followed by i2). The case (b) remains in validity and 
in the case (c) we have VilVi2UhKJh.(xp) = Kx pi(ix u i2 u i3 u i*)/2. 

By the rule 5 we get 
8. In a triple of any three consecutive intervals — components of Si9 S2, S3 — 

either there exists an interval from Sx or the triple is the last one or it can be followed 
by an ix c Si9 which is the last component of Si9 S2, S3. 

The rules 1, 2, 4, 5, 6, 7 and 8 imply 
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9. If il9 i* are two consecutive intervals from Sl9 then either i* is the last of all 
intervals from Sl9S2,S3 or VilU...UI-1«(xl,) ^ Ki li(i1 u ... u i*)/2, or x^ changes 
its sign in the triple or quadruple il9..., if at least once. 

Lemma 4 guarantees that the contribution of Sx to V*(xp) is greater or equal 
to Kt ii(St) where ii(Sx) is the total length of Sv This estimation does not depend 
on the number mt of components of St. On the other hand, if m2(m3) is the number 
of components [c p d j ([yh 3 J ) of S2(S3), and /i(S2) (//(S3)) is the total length 
of S2(S3), then by Lemma 4 and using the fact that Mt(x, a) is a nondecreasing 
function of t ([1, p. 30]), we come to the inequalities 

jf mi 1 1 fc" 
FS2(*p) ^ m ^ i (rf, - c,.)2 _ - J H2(S2), 

4 i=i m2 m2 4 

216 i=i m3 m3 216 

Thus if m2, m3 remain bounded for Kt -+ oo, then V?(xp) -^ oo which contradicts 
the boundedness of [Vc(xp)} and proves the theorem. Hence we may suppose that 
one of the numbers m2. m3 is sufficiently great and by 8, so is mx. 

Put S = d(M, a0, [c, dj) where a0 = 6MJ(d — c). Without loss of generality we 
can assume that 

(13) S < 1 and S < (d - c)/4 . 

Two cases may arise: 
1. There exists a subinterval i of [c, d) of the length 3 in which xp has at most two 

local minima (and at most 3 local maxima). Then the sign of xp shows at most 5 
changes in i. 

Consider first those intervals from Sl9 S2, S3 which have nonempty intersection 
with i as well as with [c, d\ — i. There are at most two of them and if their inter
section 7t with i has the total length greater or equal to <5/4, then Lemma 4 implies 

d4) "-W-W-fb,;.-
The second subcase is that the total length of all intervals from Sl9 S2, S3 which 

are contained in i is greater than 3 <5/4. The following cases have to be considered. 
They exclude each other: 

(a) The total length of all intervals it a Sx contained in i is greater or equal to <5/8. 
Then, in view of Lemma 4, 

(15) VfaJZK^. 

(b) The mentioned total length from the case (a) is less than <5/8. We consider the 
systems il9..., i* of consecutive intervals from Sl9 S2, S3 which start and end with 
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an interval from Sx and which are contained in i. Suppose that the total length of 
all those systems where x'p does not change the sign is greater or equal to <5/2. Using 9 
and the fact that the intervals from Sx can be counted twice, we conclude that 

(«9 vt*,)^(i ~f) = ¥-P 2 \2 8 ) 8 

(c) The total length of all systems il9 ..., i* of consecutive intervals from Sl9 S2, S3 

which have similar properties as those in (b) except that x'p changes its sign at 
least once in any such system is greater or equal to <5/8. There are at most 5 such 
systems and hence at least one of them is greater or equal to <5/5.8 = <5/40. The con
tribution of that system to V((xp) is greater or equal to K!<53/216 . 42 . 83. Hence 

(17) VfaJ^H-. 
v ' v PJ 216 16 512 

(d) The total length of the systems il9 ..., i* mentioned in the case (b) is less than 
<5/2, and that of the systems il9..., i* mentioned in the case (c) is less than <5/8. Hence 
the remaining intervals lying in i which must belong to S2 or 53 have the total length 
greater than <5/8. With respect to 8, there are at most four and one of them is longer 
than 5/32. Its contribution to V{(xp) is greater than Kx <53/216.323, hence 

(18) Vi(xp)>^- — . K } lK pJ~ 216 323 

The inequalities (14)—(18) show that (11) implies that {V<?(*p)} -» oo and hence 
(11) cannot occur. 

In order to complete the proof of the theorem we have to prove that the second 
case which will be dealt with cannot arise when p is sufficiently great. 

2. In each subinterval of [c, d) of the length <5, xp has at least 3 local minima (and 
thus at least 2 local maxima). Then the local minima of xp in [c, d) form a monotone 
sequence. Otherwise there would be a bx and four points tt < t2 < t3 < t4 in an 
interval of the length <5 such that xp(tk) = bx. In virtue of Lemma 3, (11) implies that 
for sufficiently great p, (4) contradicts (12). 

Suppose that the sequence of local minima of xp in [c, d) is nonincreasing. The 
case that this sequence is nondecreasing can be dealt with in a similar way. Consider 
any pair of consecutive minimizers t0 < tx of xp in (c, d). We have tt — t0 < <5. 
Furthermore if ((x^i) — xp(t0))l(t1 — t0)\ < a09 then there exists a straight line 
with 4 points of intersection with the graph of xp in (t0 — e9 t1 + e) where t± — t0 + 
+ 2e < <5 and the direction a of that line satisfies |a| < a0. This again contradicts 
Lemma 3 for all p sufficiently great. If ((^(fi) — Xp(*o))/('i — to)| = ao f° r every 
pair of consecutive local minimizers t0 < tt of xp9 i.e. (x^t^ — xp(t0))l(t1 — t0) = 

S —ao, then the same is true when t0 is the first and tt the last local minimizer of xp 
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in [c, d]. Their distance is tx — t0 ^ d — c — 26 and, with respect to (13), t1 — t0 ^ 

^ (d — c)/2. Hence 4M/(d — c) ^ a 0 which is a contradiction with the definition 

of a0. 

The next theorem describes the behaviour of solutions of (l) near the endpoints 

of (a, b). 

Theorem 2. If (1) satisfies conditions (A) —(D), then for each solution x of of (1) 

which is defined on (a, b) there exist (finite or infinite) 

lim x(i)(t), lim x{i)(t) (i = 0, l) . 
t-+a+ t-*b-

Proof. Only the case t -> a + will be investigated. The other case can be proved 

similarly. Suppose that for a solution x of (l) lim x(t) does not exist. Then there 
t-*a + 

exist two real numbers cx < c2 and two decreasing sequences {tn}, {sn} tending to a 

with a < tn < sn < b such that x(sn) = c2, x(tn) ^ cx(n = 1, 2, . . . ) . Since sn — tn -* 

-> 0 as n -> oo, by the mean value theorem there exist other two sequences {T„}, {an} 

with similar properties as {tn}, {sn} and such that lim x'(cn) = oo, lim x'(xn) = — OO. 
n-+co n-*co 

Hence x'(an) = c2, x'(T«) g cx for all sufficiently great n. The same situation arises 
when lim x'(t) does not exist. Repeating the considerations we obtain the existence 

t-+a + 

of two decreasing sequences {tn}, {s} such that lim tn = lim sn = a, a < ln < sn < b, 
«-*oo n-+co 

limx"(tn) = — oo, \imx"(sn) = oo. Then there exist three points fx < f2 < f3 with 
n-*co n-+co 

X"(TJ) = K (K has been taken from assumption (D)), X"(T2) = 2K, K < x"(f) < 

< 2K(f! < t < f2), f2 — fx < 1 and x"(f3) < 0. By the mean value theorem there 

exists a &l9 fx < d^ < f2, such that x'"(di) > K. Assumption (D) means that 

x""(t) = 0 as far as x"(t) = K, xw(r) = K. Hence the inequalities x"(t) > K, x'"(t) > 

> K are true, first in a neighbourhood of GX from the right and then by (D) in the 

whole interval [dl9 b), which contradicts the existence of f 3 . This completes the proof 

of Theorem 2. 
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