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DERIVATIONS ON THE ALGEBRA OF DIFFERENTIAL
FORMS OF INFINITE ORDER ON A MANIFOLD
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Summary. The paper deals with the algebra of differential forms of higher orders on a difs
ferentiable manifold. All derivations on this algebra are described, and their structure is in-
vestigated.
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The goal of this paper is to describe the structure of all derivations on the algebra
of differential forms of order <00 on a differentiable manifold. The structure of
derivations on the algebra of differential forms of a fixed finite order was studied
in [3]. It is well known that any differential form of order < oo on a compact manifold
has finite order, so that forms of order co appear only on noncompact manifold.
Thus in the case of a compact manifold the algebra of differential forms of order
< oo coincides with the algebra of differential forms of all finite orders.

Throughout this paper differentiable will mean differentiable of class C*. Together
with differentiable manifolds we shall need differentiable R®-manifolds in the sense
of [1]. Let us recall that R* is a topological vector space arising as the projective
limit lim R* of the projective system {R¥; p;}, where R* has its standard topology,
and the projections p}:R'— R¥, 0 < k <1< oo are defined by the formula
Pi(X15 oo s Xio Xxa1s--0r X3) = (Xg, ..., x;). There is a natural way (see [1]) how to
define the notion of a differentiable mapping f: U —» R®, where U = R® is an
open subset. Especially we can define the notion of a local diffeomorphism on R*.
Then a differentiable R®-manifold is defined along the same lines as a differentiable
manifold, using only R* instead of R*. Further, together with (differentiable) vector
bundles we shall need (differentiable) R®-vector bundles. They are again defined
in the same way as vector bundles, only we must take R” instead of R* as the standard
fibre. '

Let M be a connected paracompact differentiable manifold, dim M = m < .
For x € M we denote by T, = T, M the tangent space of M at x, and by T = TM =

= U T M the tangent bundle of M. For any 0 < r < oo we denote by J5T the vector
xeM

space of all r-jets of local differentiable sections of T at x. Obviously J°T = T..
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If 0 < r < oo then J,T is a vector space of finite dimension and we shall provide
it with its standard topology and differentiable manifold structure. For0 < r £ s <
< oo we have the natural projection n;: JT — J.T. We get the projective system
{J.T; m;} of vector spaces, and obviously J?T = lim J5T. This enables us to endow
J?T with the projective limit topology. With this topology J7 T is a topological
vector space. Moreover, it can be easily seen that J7 T can be provided with a natural
R*-manifold structure and that with this structure J{ T is linearly diffeomorphic
with R*.

As usual we set J'T = (J J.Tfor 0 < r < oo. We have J°T = T. It is well known
xeM

that J'T for 0 £ r < oo carries a natural structure of a differentiable manifold and
a natural structure of a vector bundle over M. In the case of J* T the situation is not
much different. For any 0 < r < s < o we have the natural projection n}: J°T —
— J'T, and it is obvious that {J'T; n}} is a projective system of vector bundles. In
the appropriate category of families of vector spaces we have
J*T = lim J'T.

This enables us first to define the topology on J*T as the projective limit topology.
We can easily check that the topology of JI T introduced above coincides with the
topology induced from J*T. Taking any open subset U < M such that T|U is
trivial, we easily find that (J'T) ! U is trivial for any 0 < r < co. The obvious
formula (J*T) | U = lim (J'T) | U allows us to introduce on J*T a differentiable
R*-manifold structure and a structure of an R*-vector bundle.

There is an obvious way in which we can extend the notion of a (differentiable)
homomorphism between vector bundles to a (differentiable) homomorphism between
a vector bundle and an R*-vector bundle or to a (differentiable) homomorphism
between R”-vector bundles. In all these cases we shall simply speak about a homo-
morphism. For example the natural projections =n;°: J*T — J'T, 0 < r < oo are
homomorphisms.

One can easily prove the following lemma.

1. Lemma. Let N be a differentiable manifold. A mapping f: N - J*TM s
differentiable if and only if for each 0 < r < oo the mapping n° o f: N - J'TM
is differentiable.

2. Definition. Let p = 0 be an integer, and let0 < r £ 0. A p-form w of order <r
on M is a family @ = {w,} .y of p-forms with w, being a p-form on JIT for each
xeM.

Let w be a p-form of order < r on M, and let X, ..., X, be differentiable vector

fields defined on an open subset U = M. We can define a function o(j'X,, ..., j"X,)
on U by the formula

(l)(jyXI, ""erp) (X) = wx(j;xl’ ’j;Xp) .

However, instead of ("X, ..., /"X ,) we will use a simpler notation (X, ..., X,).
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3. Definition. A p-form w of order < r on M is called differentiable if for any
open subset U = M and any differentiable vector fields X, ..., X, on U the function
(X4, ..., X,) is.differentiable on U.

Following the same lines as with the R%-vector bundle J®T we can define its
p-th exterior power AP(J®T). In fact we have here at least two possibilities. Either

we define A?(J*T) as U A?(JFT) or we use the projective system {AP(J'T); A’x;}}
xeM

of vector bundles and define A%(J*T) = lim A?(J"T). Both methods yield the same
result, and it is easy to see that A?(J*T) carries a natural structure of an R®-vector
bundle.

We shall denote by E the trivial line bundle M x R over M.

4. Lemma. Let w be a differentiable p-form of order < oo on M, and let x e M.
Then there exists an open neighborhood U of x, an integer 0 < r < o0, and a dif-
ferentiable p-form & of order < r on M such that w I U= (a2)* (@ | ).

Proof. The mapping
Xy X)) o(Xy, ..., X))
is obviously a multilinear mapping

I'Tx ... xI'T-TE,

-
p X
where I" denotes the functor of all differentiable sections. It can be immediately seen
that this multilinear mapping is local. Now it suffices to use the multilinear version
of Peetre’s theorem (see e.g. [2]), and the lemma follows.
Let w be a p-form of order <r on M. This form in fact represents a mapping

w: A"(J'T)—> E.

Obviously w,: A?(J;T) — E, is a linear mapping for any x € M, so that w behaves
almost like a homomorphism. Of course, w need not be differentiable.

5. Lemma. A p-form w of order <r on M is differentiable if and only if the
mapping w: A(J'T) - E is a homomorphism.

Proof. The assertion is well known if 0 £ r < oo. Thus it remains to prove it
for r = 0. If w: A (J*T) > E is a homomorphism, then w is obviously a dif-
ferentiable p-form of order < oo. Conversely, let us suppose that w is a differentiable
p-form of order < oo, and let x € M be a point. Then by virtue of Lemma 4 there
exists an open neighbourhood U of x, an integer 0 < r < o0, and a differentiable
p-form & of order <r on M such that @ | U = (z°)* (& | U). But this shows clearly
that the mapping w: A?(J*T) — E is a homomorphism, which completes the proof.
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It is obvious that differentiable p-forms of order £r. 0 < r £ o on M form

a real vector space which we denote by @\ = @W(M). We define ¢ = @ o).
p=0
With the usual A-multiplication @ is a graded algebra. The standard formula

(dw)x (j:'Xl* ""j;xp+l) =
p+1

= {2 (07 XX R Xpa) + T (= 1) (X0 X ]

i<j
X],...,X.-,..., FORERD p+1)}(X),

where X, ..., X, are differentiable vector fields defined on an open neighborhood
of x, defines a linear mapping d: @ - ®{) . This is well known and can be easily
verified for r < oo. In the case r = oo it suffices to use the result for r < oc and the
above mentioned multilinear version of Peetre’s theorem. It can be easily checked
that d is a differential on @, and that @' together with d is a differential graded
algebra.

Let 0 <r s = . The homomorphism =}: J°T — J'T induces a mapping
¥ @ — @) 1t is easy to verify that this mapping is an injective homomorphism
of differential graded algebras. Using the injective homomorphism n°*, we shall
identify ®® with n7*®", Under this identification ®®, for any 0 < r < o0, is
a differential graded subalgebra of ®(*). Moreover, for 0 < r < s < o & is
a differential graded subalgebra in . A

6. Definition. Let 0 < r, s £ oc. A derivation of degree k on ® with values
in ®® is any real linear mapping D: ¢ — & satisfying

(i) Do < @),

(i) D(¢, A @©,) = Do, A @, + (—1)** @, A Do, for any ¢, e @), ¢, e ¢,
In the case r = s we call D simply the derivation of degree k on ®®. (We recall
again that all elements appearing in this definition belong to ). From this point
of view we must understand the condition (ii).)

Using Lemma 4 we can, along the same lines as in [4], prove the following two
lemmas.

7. Lemma. Let D be a derivation on @ with values in ™, 0 < r, s < 0,
and let @,y € @‘“ If ¢ [ U=y l U with U being an open subset of M, then also
(Do) | U = (Dy) |U

8. Lemma. Any derivation on ®® with values in ®”,0 < r, s < o, is uniquely
determined by its values on % and .

9. Corollary. There are no nontrivial derivations of degree < —?2 on & with
values in @,
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10. Proposition. If 0 < r <s < o and dimM = m 2 2, then there are no
nontrivial derivations on & with values in .

Proof. Let D be a derivation of degree k on ®® with values in ¢, Accordmg
to the previous lemma it suffices to prove that D I o @ & = 0.

First let us consider an arbitrary function f € ®§’, and let x € M. We take a con-
tinuous I-form « on J}T'such that a is not a pullback (7;)*B of any continuous {-form
B on J.T. Obviously, there exists a I-form ¢ € ®{ such that ¢, = a. We have

D(fp) = Df A ¢ + f.Dop.

Because D{f9), f. Dg € P}, we have also Df . ¢ € &} .4 But this obviously implies
(Df), = 0. Because x € M was arbittary, we get Df = 0. (Let us notice that the
assumption dim M = 2 have not been used here.)

Further, let ¢ € & be arbitrary, and let x € M. Because dim M = 2, we can find
a continuous I-form « on J{T such that « is not a pullback (r})*f of any continuous
I-form B on J.T, and such that « and ¢, are linearly independent. Again there exists
a I-form € @' such that , = «. This time we have

Do AY)=Do Ay +(=1)¢ A DY,

where D(p A Y)e %), Do, Dy e 7. If ¢, # O the L-forms ¢, and ¥, are
linearly independent, hence the above equality yields (D(p)x = 0. Because xe M
was arbitrary, we get Do = 0. This completes the proof.

The previous proposition is not valid if m = 1. Nevertheless, we shall see that
even for m = 1 it holds very often.

If m = 1 then, because M is connected, we have only two possibilities, namely
M =R or S'. R and S! are commutative Lie groups, and therefore in both cases
we can choose a nowhere vanishing invariant vector field X° on M. If X is a dif-
ferentiable vector field on M, then there exists a unique differentiable function f on M
such that X = fX° For any integer 0 < r < o0 we shall define a I-form @™ of
order <r as follows. Let x € M, let Ve J.T. We take any differentiable vector fied X
on M such that j5X = V. Then we define

(V)= XUX°... X% f,
[ —
(r—1)x
where X = fX°. It can be easily verified that this definition does not depend on the

choice of X with the property j.X = V, and that o is a differentiable 1-form of
order £r on M.

11. Proposition. If 0 £ r + 1 <s £ o0 and m = 1, then there is no nontrivial
derivation on ®9 with values in .

Proof. Let D be a derivation of degree k on ®® with values in . By virtue of
the first part of the proof of Proposition 10 we have Df = 0 for any f € %), Further
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forany 0 < i < r we have

D(w? A o) = DO A @ + (=1} 0 A D0
with D(w® A @*), 0® A Do e &, Consequently Dw® A w® e @™, which
implies

Do =0, 0Li=<r.

(Let us notice that this result holds under the assumption 0 < r < s £ o only.)
Moreover, for any r < j < s we have

D@ A 0I*D) = Do A @D 4 (= 1) 0 A DYt D
Because D(w"Y) A wU*V)e ™, this equality implies Do’ = DwY*" = 0. Thus
we get

DoV =0, r<j<s if s< o,

Do =0, r<j if s=o.
Any form ¢ € @ can be expressed (at least locally) as a finite linear combination
of the forms 0@, o™, ... with coefficients from &$. Consequently Dy = 0, which
completes the proof.

We denote by %", | the vector space of all derivations of degree k on @ *! with

values in ©. If m = 1, then for D e*%],, we define (D) e ®{], by the formula
v(D) = D"V,

12. Proposition. Let m = 1. Then v:*%&",, — &), is an isomorphism of the
vector space *#., , of all derivations of degree k on ®**" with values in & with
the vector space ®Y) | of all (k + 1)-forms of degree <r.

Proof. We have proved in the first part of the proof of Proposition 10 that for
any De*#,, we have Df = 0 for fe ®7*"). Later on we have seen in the proof
of Proposition 11 that for any D e*%!,, we have Do'® = ... = Do™ = 0. Now
using Lemma 8 we can immediately see that v is injective.

Conversely, let ¢ € ®") ;. We define

Df =0 forany fe®y*D,
D@ A...A0@)=0 for ij<..<i,<r+1,

D@ A ... A @) = (= 1D ) A LA @) A @
for
I <...<ip <iy,=r+1

It is easy to cheak that D can be uniquely extended to a derivation of order k on
@D with values in @, and that v(D) = ¢. This shows that v is surjective.
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Propositions 10, 11 and 12 give a complete description of derivations on ¢®
with values in @ under the assumption 0 < r < s < oo. Therefore, from now on,
we shall always assume that 0 < s < » < . We denote by *Z. the vector space

a0
of all derivations of degree k on ®® with values in ®". Setting #; = @ *#] we

k=—o
obtain the graded vector space of all derivations on ®*’ with values in @, If r = s
and D e*Z., D' € '#, we define

[D,D] = DD — (-1 DD.

It is casy to verify that with this operation % is a graded Lie algebra.
Proceeding analogously as in [4] and using Lemma 4, we easily obtain the fol-
lowing lemma.

13. Lemma. Any linear mapping D: ¢ ® & — & satisfying

(i) DOY < &, p = 0,1,

(i) D(¢, A @) = Do, A @, + (=1)" ¢, A Do, for p+ 4 =1, 9, € &,
9 € P
can be extended to a derivation of degree k on ®® with values in ®.

Now we shall start the study of special derivations.

14. Definition. A derivation D € *#" is called a derivation of type iy if it satisfies
D(®§") = 0.
We denote
"Iy ={De*R;; Dis of type iy} .
k4" is a subspace of *#". The graded vector space 4% = @ “J7is a homogeneous
subspace of #-. k=re

15. Definition. Let p = 0 be an integer. A J*T-valued p-form Lof order <r on M
is a family L = {L_} .y, where L, is a J3T-valued p-form on J.T for each xe M.

Let Lbe a J*T-valued p-form of order <r on M, and let X, ..., X, be differentiable
vector fields defined on an open subset U = M. We can define a section
L(j’X,,...,j"X,) of J*T on U by the formula

L(jX ... J'X,) (x) = L(j2Xy, .., J2X,) -
Instead of L(j"X . ..., j’X,) we shall again use a simpler notation L(X, ..., X,).
16. Definition. A J*T-valued p-form L of order <r on M is called differentiable

if for any open subset U = M and any differentiable vector fields X, ..., X, on U
the section L(X, ..., X,) is differentiable on U.
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Any J*T-valued p-form Lof order <r on M defines a mapping
L: A”(J'T) - J°T

The following lemma can be proved in the same way as Lemma S.

17. Lemma. A J°T-valued p-form L of order <r on M is differentiable if and
only if the mapping L: ANJ'T) — J°T is a homomorphism.

On the set of all differentiable J°T-valued p-forms of order <r on M there is
a natural vector space structure. We shall denote this vector space by £,

Let o € @ and Le Z)P. We define a (p + k)-form ¢ X Lof order <r onM
by the formula

((/) K L)X(Vl’ veoon Vp+k) =

| ;
- Ysga Vs oo Vi) TV s ootV L)
(p = 1) (I»—i—l)‘Z (( "
Here Vy, ..., V, € JIT, and n = ny. The sum is taken over all permutations o of
p + k elements, and sg o denotes the sign of . (If p = 0 we define ¢ X L=0.)
Obviously ¢ X Lis a differentiable (p + k)-form of order <r on M, i.e. ¢ A Le
ed),. If o e ), y e ¢! it can be proved by computation that

(@A) A L=(p ALy A=Y+ (=1)"2 o Ay A L).
(r)(s)

(Due to our identifications we can omit the n5*’s in this formula.) For Le ) we
define

irp = ¢ N L.

The above formula shows that i, is a derivation of degree k on # with values in &.

18. Proposition. Any derivation D of degree k = —1 on & with values in &
of type iy can be uniquely expressed in the form D = i,, where Le ().

Proof. We shall first consider thecase 0 £ s < owand 0 r L w. LetU =« M
be an open subset diffeomorphic with an open ball in R™, and let u, ..., u, be a local
basis of J°T on U. Let ¢, ..., ¢, be the corresponding dual basis of (J*T)* on U.
We define Lon U by the formula

L=ZD(pi.u,~.

i=1
One can check that this definition does not depend on the choice of the basis. Then
it is easy to see that we get Le )% which has the desired property.
It remains to consider the case r = s = c0. Let again U = M be an open subset
diffeomorphic with an open ball in R™. For any integer 0 < t < o0 we fix a local
basis u{”, ..., ul? of J'Ton U in such a way that
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it = 40 for 1SiZa

t i

Ayt =0 for a, + 1 SiZay,.

We denote again’ by ¢ the basis of (J'T) on U dual to u'?, ..., ul". The sequence
(L= 5 Doty w2

obviously defines a J*T-valued (k + 1)-form of order <% on U. Now it is easy
to check that in this way we obtain an element Le #{%™ with the required property.
The next lemma can be proved along the same lines as Lemma 4.

19. Lemma. Let L be a differentiable T-valued p-form of order < on M, and
let x € M. Then there exists an open neighborhood U of x. an integer 0 < r < o,
and a differentiable T-valued p-form L of order <r on M such that L| U=
= (x7)* (L] U).

Let Le V)Y, andletV,, ..., Viy € ot where 0 < r, | £ oo. We take differenti-
able vector fields X, ..., X, defined on an open neighborhood U of x such that
JH'X; =V, 12i<k+ 1. Obviously L(X,,....X,,,) is a differentiable vector
field on U. We define a J'T-valued (k + 1)-form (7L), on J.*'T by the formula

(ﬂ(”L)x (Vl’ DR V;c+1) = .I:c(L(Xla LXE2 ] Xk+ l)) .

It can be easily verified (using the above lemma if r = oo) that this definition does
not depend on the choice of the vector fields X, ..., X;,,. Moreover, it is obvious
that the family A"L = {(A"L),}xenm isa differentiable J'T-valued (k + 1)-form of
order <r + 1 on M. In this way we obtain a linear mapping

A 0 +1)(1)
av: L0 - 2
L "L,

It can be easily seen that this linear mapping is injective. Using Proposition 18 we
can modify iV in order to obtain an injective linear mapping

#(1): "f:) - kjrl‘+l

iLD——P iﬁ(l)L .

20. Definition. Let D e*#.. We shall say that D is a derivation of type d, if it
satisfies Dd — (—1)*dD = 0. (We shall abbreviate [D, d] = Dd — (—1)*dD. The
differential d was defined after Lemma 5.)

It is easy to see that the set *9” of all derivations of degree k and type dy on &
with values in @) carries a natural structure of a vector space. In the sequel we denote

D= @ ‘o

k=—-w
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21. Lemma. Any derivation of type dy on ®© with values in & is uniquely
determined by its values on ®3’.
Proof is easy.

22. Corollary. There are no nontrivial derivations of degree k < —1 and type d
on @ with values in &,

23. Lemma. Any linear mapping D: ® — & satisfying
(i) DPY’ < @),
(i) D(fg) = Df.g + f.Dg forf,gedy
can be extended to a derivation of degree k and type d, on ®© with values in ®.
Proof follows the lines of the proof of an analogous lemma in [4].

24. Lemma. Let D e*%; be a derivation. Then [D.d]e**' 47 is a derivation
of type dy.

Proof is straightforward.

Let D be a derivation of degree k on @ with values in @, For fe &) and
Viy ..., Vi€ JiT we define |

(D) (Vi oo Vi) f = (DF) (Vi .., Vi) .

Obviously o(D)(Vy, ..., Vi) € T,. In this way we obtain a differentiable T-valued
k-form of order Zr, which we denote by a(D). Thus we have a homomorphism

o: kG - L7
D+ q(D).
We can now define a homomorphism
n: *AG - * 25
by the formula n(D) = [ip), d]-
25. Proposition. 1 is a projector and kern = *#%, imn = *@f. Consequently
Yy = 55 @ AT,
Proof. Let De*%;, fe ), and let V4, ..., V, € J.T. We get
(rl(D)f) (Vl’ ey Vk) = ([id(D)* d]f) (Vl’ ceey I/k) =
= (igmydf) (Vis ..., Vi) = df(a(D) (V4 ..., V)) =
= U(D)(Vl, ooy I/k)f = Df(Vl, eoq ‘/I;) .

If D e*2} then by virtue of Lemma 21 this implies that n(D) = D. We have thus
proved that 5 is a projector and that im 5 = *@j. Moreover, the above formula
also shows that ker n = *.#7. The rest of the proof is obvious.
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The previous result enables us to extend the linear mapping u(®:*se — kg2
defined before. Let D € *2g. Then there are uniquely determined D, € “43, D, € * 9
such that D = D, + D,. Moreover, D, = [i,p,, d]. We define a linear mapping
Pk RP — ¥R* by the formula

A(D) = p'™XDy) + [igwracpy» 4] -

Obviously A |*#% = u* and A*)(*27) = *2%. Furthermore, it can be easily
seen that for any D € *23 we have

A=(D)| 0 = D,

which shows that the linear mapping fi{*) is injective. From now on we shall write
simply u(* instead of ().

26. Definition. A derivation D € *22 is called a simple derivation if D € im pu(*.
A derivation D e *#3 is called a lifting derivation if D | ©® = 0.

Let us notice that there exists a natural projection ng: L{2\™ — L9, Using
this projection we can formulate the following proposition.

27. Proposition. A derivation D e *R% is a lifting derivation if and only if D
is a derivation of type iy and D = iy, Le Z{2™ with nL = 0.
Proof is obvious.

28. Theorem. Any derivation D € *&% can be uniquely expressed in the form
D = (D) + u=(DP) + D=,

where D\®¥ e *#%, D €*@3, and D™ is a lifting derivation.
Proof follows from the previous considerations.
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Souhrn

DERIVACE NA ALGEBRE DIFERENCIALNICH FOREM
NEKONECNEHO RADU NA VARIETE

JAROSLAV CARBOL, JIRI VANZURA

V praci se uvazuje algebra diferencialnich forem vySSich fadu na diferencovatelné varieté&.
Jsou popsany v8echny derivace na této algebfe a je zkoumana jejich struktura.

Pe3srome

ANPOGEPEHIVPOBAHUS HA AJNINEBPE NJUOOEPEHUUAJIBHBIX ®OPM
BECKOHEYHOTI O ITOPJIAKA HA MHOTIOOBPA3UU

JAROSLAV CARBOL, JIRi VANZURA

B paborte paccmaTtpuBaetcs anredpa audpdepeHunanbHbiX GOPM BbICIIKMX MOPAAKOB HA audde-
peHuMpyeMoM MHoroobpa3uu. Onucanbl Bce auddepeHUMpOoBaHus HA 3TOM anrebpe U U3yHeHa uX

CTPYKTypa.
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