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WEAKLY ALMOST PERIODIC SOLUTIONS OF LINEAR EQUATIONS
IN BANACH SPACES

VLADIMIR LOVICAR, Praha

(Received May 15, 1971)

In this paper are given some conditions on linear operator A in a Banach space B,
under which all bounded solutions of the equation

(1) x(t) = A x(f)

are weakly almost periodic. The received results generalize the results of paragraph 3
of paper [4]. We refer on this paper for more detailed information about this matter.

Throughout all paper we suppose, that is given a complex Banach space B and
a linear operator 4 on B, which satisfies the following conditions:

©) 1) D(A) = B,
2) D(4") = B*.

We shall consider only continuous- solutions of the equation (1) even if the main
results holds also for more general solutions.

1. Definition 1. A continuous function x on R with values in B is called to be
solution of the equation (1), if it holds

+ o
©) f [(x(8), x%) (1) + (x(2), 4*x*) f()] dt = 0
for any x* € D(A*) and for any f € 9(R).
Definition 2. Let f e L, (R). By spectrum of f we mean the set of real numbers,
denoted by o(f), such that 1 € o(f) iff the function exp;; (exp;; () = €'** for t e R)
belongs to the smallest invariant L,-closed subspace of L. (R), which contains the

function f.
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Definition 3. Let x be a bounded continuous function on R with values in B. Then
the spectrum of x is the set of reals defined by

() = U of(x )
(where (x, x*) (£) = (x(1), x*) for t € R).

2. Lemma 1. Let x be a bounded solution of an equation (1) and let p e o(A)
(i.e. let (bE — A)™" exist). Then the function y, defined by

4) y(f) = (ME — 4)™" x(1) (teR)
has the following expressions:

(5) y(t) = -rwe"” x(t + s)ds for Rep>0
0

0
yut) = —J e " x(t + s)ds for Rep<0
—o :
yu(t) = e"(uE — A)~" x(0) — f e "9 x(s)ds for Rep=0
0

Proof. Let for instance Re z > 0 and let we denote j, the function: j(f) =
= [g™ e ™ x(t + 5)ds = [ e"*™9 x(s) ds (¢ € R). Let us note, that the function y,
and §, are bounded on R. Let x* € D(4*) and let f € Z(R). Then we obtain:

"

W0 = 3001 60, (0 = )70 101

_ (" w( f meﬂ('“s) x(s) ds, x*) f'()dt = - Jw m(x(t), A*(BE — A*¥)™1 x*) f(1) dt +

o —® t -0

+ "+°°<ﬂ f "7 et=9 x(s) ds — x(t), x*) £(0) dt =

J - t

__ J fw(x(t), (—E + A((uE — 4)~1)*) x¥) f(i) dt +
+u f G0, ¥ £(1) dt — J + "), x*) () dt =

= [ 0 - 50 30 10)

From the above follows that (y,(f) — 7,(t), x*) = ¢(x*) e*". As the function
Y. — J, is bounded, we obtain that ¢(x*) = 0. Hence y, = 7, because of D(A*) is
dense in B*.
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The similar calculation prove our assertion also for Re p < 0 and for Re u = 0.

Lemma 2. Let x be a bounded solution of an equation (1) and let p e o(A). Then
the function y,, defined by (4), is uniformly continuous solution of the equation (1).

Proof. It follows from (5) that the function y, is uniformly continuous on R.
For x* € D(A*) and for f € Z(R) we have further

00 x0) 7 0 a0 = [0, (0 = ) 8-

+ oo

R0 A~ A ) 1) 1 = j (). 4%x%) 11

o

and so y, is a solution of the equation (1).

Theorem 1. Let B be a complex Banach space and let A be a linear operator in B
satisfying the conditions (2). Let moreover ¢(A) + 0. Then for any bounded solu-
tion x of the equation (1) the functions (x, x*) are uniformly continuous on R for
all x* € B*.

Proof. Let u € ¢(A) and let x be a bounded solution of the equation (1). Let y, be
defined by (4). Then y, is uniformly continuous on R by lemma 2 and because of the
equality (y,, x*) = (x, (RE — A*)™* x*) (x* € B*), the functions (x, x*) are uni-
formly continuous on R for any x* € R((ZE — A*)™!) = D(4*).

Theorem 2. Let B be a complex Banach space and let A be a linear operator in B
satisfying the conditions (2). Let x be a bounded solution of the equation (1). Then
i (x) = o(A).

Proof. Let x* € B* and let us define a function g of complex variable z by

+
9(2) = J e #(x, x*)(s)ds for Imz <0

0
0

9(z) = -J e #(x,x*)(s)ds for Imz>0
- o0

Let 4 be real number such that il e ¢(A). Then for all z from some neighbourhood
of A with Im z # O we have by lemma 1:

4(z) = ((izE — 4)~* x(0), x¥)

and so g has analytic continuation on the whole neighbourhood of A. From the
theorem (XI, 4, 24) of [1] follows that A ¢ o((x, x*)). So we have implication: A € R,
iA € o(A) = A ¢ o(x), which proves our assertion.
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3. We are now able to prove main theorem:

Theorem 3. Let B be a complex Banach space and let A be a linear operator in B
satisfying the conditions (2). Let the set —io(A) N R be residual'). Then any
bounded solution of the equation (1) is weakly almost periodic.

Proof. Let x be a bounded solution of the equation (1). For any x* € B*, the
function (x, x*) is uniformly continuous by theorem 1 and has residual spectrum by
theorem 2 and by the assumptions of the theorem. Hence the function (x, x*) is
almost periodic by theorem 5 of [3].
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1) i.e. includes no non-null perfect subset.
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