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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON HAMILTONIAN CIRCUITS AND SPANNING TREES 
OF HYPERCUBES 

IVAN HAVEL, Praha 

(Received April 5, 1983) 

1. INTRODUCTION 

The aim of this paper is to prove that certain trees are spanning trees of the 
hypercubes Qn (n ^ 1). Obviously, the simplest spanning tree of Qn is the path p2«-i 
of length 2n — 1 (where the length of a path is measured by the number of its edges). 
Other two spanning trees of Qn (similar to each other) have been found by Nebesky 
when solving a different problem in [8]; they arise by means of certain "reduplica­
tion" of binary trees. 

A complete solution of the problem of spanning trees of hypercubes would be 
provided by characterizing them; such a characterization seems to be of interest 
especially in view of the fact that hypercubes have been characterized (cf. e.g. [ l ] , 
[6] and [7]). Unfortunately, we are not able to solve the above mentioned problem; 
we present it therefore as an open question (together with some related conjectures) 
at the end of the paper (Sec. 5). 

In Sec. 2 we prove certain assertions concerning the structure and properties of 
hamiltonian circuits and paths in Qn. Using them we find in Sec. 4 some spanning 
trees of Qn. Sec. 3 describes spanning trees of Qn obtained in a different way, namely, 
by modifications of binary trees. 

In the whole paper we deal only with finite undirected graphs without loops and 
multiple edges. V(G) and E(G) denote the sets of vertices and edges of G, respectively. 
The maximum degree of vertices in G will be denoted by maxdeg (G). 

The hypercube Qn (n ^ 1) is defined in the usual way (cf. e.g. [2]); its vertices are 
all the vectors of length n consisting of 0's and l's. For u, v e V(Qn), Q(U, V) denotes 
the Hamming distance of u and v, i.e., the number of coordinates in which u and v 
differ from each other, (w, v) e E(Qn) iff Q(U, V) = 1. Given i, 1 g i <; n, Qn can be 
decomposed into two copies of Qn-t (denoted by 6i- i- Q»-i) whose vertices are 
joined by 2n~1 edges of a perfect matching; the vertices of Q'n_ i(Q^_ j) are those of Qn 

with the i-th coordinate equal to 0 (l, respectively). We call this decomposition of Qn 

canonical (more precisely, i-canonical). 
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The notion of the so called Cn-valuation of a graph will be frequently used (cf. 
[5]); the definition and the basic property, modified for the case of trees, are as fol­
lows: a tree Tis said to be C„-valued, if the edges of Tare labelled by integers from 
{ 1 , . . . , n) in such a way that for any path p of Tthere is k e {1, ..., n) such that an 
odd number of edges of p are assigned k. Then Tis isomorphic to a subgraph of Qn 

(in other words: Tis embeddable in Qn) if and only if there is a Cw-valuation of T. 
Given a Q-valuation of T and a path p in T, we define "the odd set of p " by 

O(p) = {ke {1, ...,n}; an odd number of edges of p are labelled by fc} . 

With a CM-valuation of T a certain embedding of Tin Qn can be associated, i.e., an 
injection e: V(T) -+ V(Qn) such that (u, v) e E(T) => (e(u), e(v)) e E(Qn). The map­
ping e is obviously an isomorphism of T to a subgraph of Qn (this subgraph not 
necessarily being an induced one). If p is a path in T with end-vertices u, v and 
\0(p)\ = /, then Q(e(u), e(v)) = /. 

It is clear that every tree can be Cn-valued (for n sufficiently large). By dim T we 
shall denote the smallest n such that there is a Cn-valuation of T(obviously, dim Tis 
the smallest n with the property that Tis isomorphic to a subgraph of Qn). 

We shall frequently need ^-valuations of paths; let us construct one of them as 
follows: for i _̂  1 let i = 2J. m, where m is odd. Putting ax = j + 1 we obtain the 
sequence {ai}i^1 whose members are 

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 . . . 

It is not difficult to see that for k _ 1 the values { a j ? ^ 1 m a y b e u s e d as the values 
of a Q-valuation of the path p2h-x of length 2k — 1. Let us call this valuation the 
basic Q-valuation of p2*-x- We have 0(p2u-l) = {k} and the basic Q-valuation 
may easily be modified so that e.g. 0(p2k.1) = {l}. 

2. SOME STRUCTURAL PROPERTIES OF HAMILTONIAN 
CIRCUITS AND PATHS IN Qn 

In this section we derive certain properties of hamiltonian circuits and paths in Qn 

that will be needed in Sec. 4 (some of them seem to be of a certain interest by them­
selves). If u, ve V(Qn), u =}= v, and if an arbitrary path p containing u and v or 
a hamiltonian circuit c in Qn is given, we use in addition to the well-known Hamming 
distance Q(U, v) of the vertices u, v also the notion of "the distance of u, v along p or 
along the circuit c" (with the obvious meaning); the vertices u, v have always two 
distances du d2 along c (where dx H- d2 = 2" and the equality d1 = d2 may hold). 

2.1. Proposition. Let n ^ 2, u, v e V(Qn), u =# v. Let r = Q(U, V) (mod 2), o(u, v) ^ 
g r ^ 2" — Q(U, V). Then there is a hamiltonian circuit c in Qn such that one of the 
distances of u, v along c is r (and the other is 2n — r). 
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Proof. Let s, t, d and n be positive integers. We shall write HC(s, t; d, n) if the 

following holds: for any u, v e V(Qn) fulfilling Q(U, v) = d there is a hamiltonian 

circuit in Qn such that one of the distances of u and v along this circuit is s and the 

other is t. Obviously, HC(s, t; d, n) iff HC(t, s; d, n) and if HC(s, t; d, n), then 

(1) s + t = 2", 

(2) d ^ min (s, t), d ^ n, and 

(3) d = s = t (mod 2). 

We shall show now that HC(s, t; d, n) holds for all quadruples s, t, d, n of positive 

integers fulfilling (l), (2) and (3); obviously, this will prove the proposition. 

First we prove two lemmas using the notion of a canonical decomposition of Q„+i 

(into Q'n and Ql). 

Lemma 1. HC(s, t; d, n) => HC(s, t + 2"; d, n + 1). 

The implication easily follows from Fig. 2.1; given u, v e V(Q„+i) with Q(U, v) = d, 

it is always possible to find an /-canonical decomposition of Qn+l such that both u 

and v belong to the same part of it (e.g. to Q'n). Then, HC(s, t; d, n) guarantees the 

existence of a hamiltonian circuit c' in Q'n such that the distances of u' and v' along cr 

are s and t. Let c" be the image of c' in Ql. A hamiltonian circuit c of Qn+i with the 

properties required (i.e., such that the distances of u and v along c are s and t + 2n) 

can now be easily constructed from c' and c" according to Fig. 2.1. 

v=v' 
* ; к 

u^u' 

Fig.2.L 

Lemma 2. HC(s, t; d, n) and 0 = q < f => HC(s + 2g + 1, s + 2f - 2q - 1; 

d + 1, n + 1). 

Using again a canonical decomposition of Qn+i we assume that if u,ve V(Qn+l)> 

Q(U,V) = d + 1, then w e V(Qi) and i; e V(Ql). The construction then easily follows 

from Fig. 2.2. 
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We are now ready to prove the main proposition using induction on n: both 
HC(1, 3; 1, 2) and HC(2, 2; 2, 2) obviously hold. Let n ^ 2, suppose HC(s', f; d', n) 
holds whenever s' + f = 2", d' £ min (V,1'), d' g « and s' s f ES rf' (mod 2). 
Let s + t = 2"+ 1 , d £ min (s, t), d £ n + 1, s = f = d(mod 2). If d = 1, then 

U s U ' 

Fig. 2.2. 

-s * f; let e.g. s < t. Using Lemma 1 we have HC(s, t - 2"; 1, nj => HC(s, /; 1, n + 1). 
Let d > 1; then 1 = d - 1 = n and therefore HC(d - 1, 2" - d + 1; d - 1, n) 
holds. Suppose s = f and put q = (s - d)/2. Then 0 : = ^ < 2 " - d + l and, using 
Lemma 2, we obtain HC(s, t;d,n + 1), q.e.d. 

The following result is an easy consequence of 2.1. 

2.2. Corollary. Let n = 1, consider the path pln.x of length 2n - 1. Assume i, 
je{l,...,n}, / 4=I, 1 = / = 2n - 1. Let pt be the initial part of pln.l of length I. 
Then it is possible to construct a evaluation of p^.^ such that 0(pt) = {/} if / 
is odd and 0(pt) = {/,;} if / is even. 

In fact, if e.g. / is odd, choose u, v e V(Qn) differing in the i-th coordinate; then 
$(u, v) = 1 and there is a hamiltonian circuit c in Qn such that one of the distances 
of u, v along c is /. Let us delete the edge incident with u from the other chord (of 
length 2n - /) of c. In this way a hamiltonian path p in Qn is obtained; since p is 
embedded in Qn, we obviously can use the corresponding eva lua t ion of p as the 
desired one and proceed quite similarly also in the case of even /. 

For u e V(Qn) let u denote the vertex opposite to u in Qn (i.e. such that Q(U, U) = n). 

2.3. Proposition. Let u, v e V(Qn), Q(u, v) = 1 (mod 2). Then there is a hamil­
tonian path p in Qn with end-vertices u and v. Moreover, ifu^v (i.e. ifQ(u, v) < n), 
then p can be constructed in such a way that the distance of u and v along p equals 
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n —- Q(U, V) (i.e. "P goes from u first to v in the shortest possible way and then from v 
to v"). 

Proof. 1. Assume first Q(U, V) = 1; according to 2.1 there is a hamiltonian circuit c 
in Qn such that one of the distances of v and v along c is n. Without loss of generality 
we may assume that the edge (u, v) belongs to the chord of length n of c joining v 
and v. Removing the edge (u, v) from c we obtain the required hamiltonian path. 

2. Assume now 3 = Q(U, V) ^ n. Let, without loss of generality, u = (0, ..., 0), 
v = (0 , . . . , 0, 1, ..., 1), put w = (0, ..., 0, 1, 0). Let Q!n_1 and Q'n_1 be parts of the 
n-canonical decomposition of Qn (i.e., Qn-x is the hypercube induced in Qn by all 
the vertices having 0 as its n-th coordinate). It follows from what has been proved 
above that there is a hamiltonian path p' in Qn-X joining u and w such that the 
distance of the vertices (0, ..., 0) and (1, ..., 1, 0, 0) along p' is n — 2; we may assume 
that the beginning of p' is formed by the vertices (0 , . . . , 0), (1, 0, . . . , 0), (1, 1,0,... 
..., 0) , . . . , (1, 1, . . . , 1, 0, 0). Let us extend p' by adding the edge joining w = (0, ... 
..., 0, 1, 0) with w" = (0, . . . , 0, 1, 1), where w" belongs to Q'^^ We have Q(W", V) = 
= Q(U, V) — 2 and the distance of v and w" in Qn-i is again odd, therefore by in­
duction there is a hamiltonian path p" in Qn_ t with end-vertices v and w". Joining 
the paths p' and p" by the edge (w, w") we obtain a path p with the desired properties, 
q.e.d. 

2.4. Remark. From 2.3 the following fact can be easily obtained: Let u, v e V(Qn), 
Q(U, V) = 1 (mod 2); let ll9 12 be integers fulfilling ll9 12 _z I, /L + 12 = 2" - 2. 
Then there are two vertex-disjoint paths of lenghts ll9 l2 in Qn with end-vertices u 
and v. 

A similar fact can be proved also in the case of even Q(U, V): 

2.5. Proposition. Let u,ve V(Qn), u + v, Q(U, V) = 0(mod2); let ll9 l2 be odd 
integers fulfilling ll9 l2 _ 1, lt + l2 = 2n — 2. Then there are two vertex-disjoint 
paths of tenths ll9 l2 in Qn with end-vertices u and v. 

Proof. Assume first lx _ Q(U, V) — 1, /2 _ Q(U, V) — 1. It follows from 2.1 that 
there is a hamiltonian circuit c in Qn such that the distances of u and v along c are 
l! + 1, 12 + 1. Removing two suitably chosen edges from c we obtain the paths 
required. Suppose now e.g. lx < Q(U, V) — 1. Let u' e V(Qn) such that Q(U, U') = ll9 

Q(U, V) = Q(U, U') + Q(U', V). Then Q(U', V) is odd and from 2.3 we conclude that 
there is a hamiltonian path p in Qn with end-vertices u', v going "in the shortest 
possible way" from u' to v. If necessary, we can achieve by a permutation of co­
ordinates (more exactly, by constructing a new hamiltonian path arising from p) 
that p goes in the shortest way from u' to u. By removing one edge from p (namely 
that incident with u from the part of p joining u with v) we obtain the paths required. 

2.6. Remark. The assumption of 2.5 that ll9 l2 are odd cannot be omitted. (This 
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may be seen from the example of u, v e V(Q3) such that Q(U, V) = 2. There is no pair 
of vertex-disjoint paths of lengths 2 and 4 with end-vertices u and v in Q3). 

We shall need one more technical result: 

2.7. Proposition. Let u, v, u', v' e V(Qn) be a quadruple of different vertices, let 
Q(U, U') = Q(V, V') = 1, Q(U, V) = Q(U', v'). Then there is a pair of vertex-disjoint 
paths Pi, p2 in Qn such that px joins u with u', p2 joins v with v' and both px and p2 

have the same length 2""1 — 1. 

Proof. We prove that, given u, u', v, v' with the properties described above, 
there \s i (I _\ i _\ n) such that for the /-canonical decomposition of Qn into Q'n_t 

and Qn_l the following holds: u, u' e V(Q'n_1), v, v' e V(Qn_l). Then the assertion 
to be proved follows easily from 2.3. 

Let u = (w l 5 . . . , un), v = (vl9 ..., vn), u' = (u\, ...,u'n), v' = (v[, ..., v'n). Put J = 
= {j; Uj 4= Vj}, let uk 4= u'k, vt 4= v\. From the assumptions we easily derive the 
following assertion: if k = /, then J - {k} 4= 0; if k 4= /, then J - {k, /} 4= 0 as 
well. Thus it is in both cases possible to choose an integer i such that ut = u\ 4= v\ = 
= vh q.e.d. 

3. SPANING TREES OF HYPERCUBES OBTAINED BY TRANSFORMATIONS 
OF BINARY TREES 

In this section we describe certain spanning trees of hypercubes arising by simple 
transformations of binary trees. 

For n _i 2 let Bn denote a complete binary tree on n vertex-levels with one edge 
added to its root. Fig. 3.1 shows B2, B3 and B4. 

Fig. 3.1. 

Obviously, Bn has 2 n _ 1 + 1 leaves and 2""1 - 1 vertices of degree 3, \V(Bn)\ = 2 \ 
Further, denote Bn by ^ 1 } and for k = 2 let B(k) arise from Bn by splitting each 

vertex into k new vertices (see examples in Fig. 3.2). Then obviously |V(_*j,fc))| = 
= k. 2". 

For k _t 2 there is a unique path of length 2k — 1 joining a leaf with a vertex of 
degree 3 in B(k). We call this path the main branch of Bn

k) (and draw it vertically). 
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3.1. Remark. It follows from [3] that dim Bn = n + 1 for u ^ 2. Now we will 
prove that dim B(2) = n + 1 as well. 

I 
B, щ B -

Fig. 3.2. 

3,2. Proposition. For n = 2, dim B(2) = n + 1 and since \V(B(2))\ = 2" + 1 , B(2) is 
a spanning tree of Qn+1. 

Proof. dimB<2 )

 = n + 1 follows from |V(Bi 2 ))| = 2n + 1 . In order to prove 

dimBJ,2) ^ n + 1 we construct by induction a C„ + 1-valuation of B(2): 

a) C3-valuation of B(

2

2) is shown in Fig. 3.3. 

Fig. 3.3. 

b) Assume such a Cw + 1-valuation cp of B(2) to be given that the two upper edges 
of the main branch of B(2) have values n and n + 1 (top-down, cf. Fig. 3.4). Denote 
this Crt+1-valued tree B|.2) by T Take another copy of B(2) and construct its C„+1-
valuation cp' from cp by interchanging the values n and n + 1, i.e. define cp' : E(B(2)) -» 
-> {1,..., n + 1} by putting 
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!

<p(e) if (p(e) < n , 
n + 1 if (p(e) = n , 
n if cp(e) = n + 1 . 

Denote the Cn+1-valued tree Bn
2) obtained in this way by T (cf. Fig. 3.4). 

Fig. 3.4. 

Now, we'construct a Cw+2-valued tree B*2^ from Tand T as follows (cf. Fig. 3.5): 
delete two upper edges of the main branch of T, join the leaf obtained by a new edge 
to the second from above vertex of the main branch of T, assign n + 2 to this new 
edge and finally add the path of length 2 (with values n + 1 and n + 2 on its edges) 
to the upper-most leaf (in Fig. 3.5 the new edges are drawn by thick lines). 

Fig. 3.5. 

It may be easily verified that the valuation of JBJ+\ constructed as described is 
a Cw+2-valuation, q.e.d. 

3.3. Proposition. For n = 2 and s = 1, dim Bn
2t) = n + s and since \V(B(

n
2s))\ = 

= 2W+S, Bn
2s) is a spanning tree of Qn+S. 
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Proof. The case s -= 1 is solved by 3.2, assume therefore s ^ 1 and let a Cn+V-
valuation cp of Bn

2s) be given. Note that Bn
2s+1) arises from Bn

2s) by replacing each 
vertex by an edge; call these edges "new" and define a valuation cp': E(B(2s+l)) -* 
-> { 1 , . . . , n + s + 1} by putting cp'(e) = (p(e) if e is not a new edge and q>'(e) = 
= n + 5 + 1 for all the new edges. Obviously, cp' is a C„+s+1-valuation of BJ.2*+1).. 

Fig. 3.6. 

Fig. 3.7. 
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A lower bound dim B{2S)
 = n + s is trivial, since | V(Bn

2S))\ = 2n+s. Fig. 3.6 illustrates 
the construction for the case n = 2, s = 1, the new edges being again drawn by thick 
lines. 

3.4. Corollary. For n = 2 and k > 1, dim B(k) = n + ]log2 k[. 

Proof. The case k = 2s for some s > 0 is solved by 3.3. For k different from the 
powers of 2 we first prove the lower bound dim B(k)

 = n + ]Iog2 k[, which im­
mediately follows by comparing the cardinalities of the vertex sets (Bik) £ Qm implies 
the inequality k . 2" ^ 2m). For the proof of dim B(k) ^ n + ]log2 k[ let s = 
= ]log2 k[ and let q> be a CM+S-valuation of Bn

2s) constructed according to 3.3. 
Investigating the last step of this proof, i.e., the construction of the Cn+s-valued Bn

2S) 

from the C^^i-valued Bn
2s_1), we can see that each path of length 2 S _ 1 of Bn

2s~X) 

between two vertices of degree 3 or between a vertex of degree 3 and a leaf was 
extended by adding 2 s " 1 new edges to the path of length 2 s + 1 (the main branch 
of Bn

2s~l) being extended by adding 2s new edges to the path of length 2S + 1 — 1). 
The desired Crt+s-valued tree Bn

k) can be then obtained by removing arbitrarily chosen 
2s — k new edges from every such path (and by removing arbitrarily chosen 
2(2S — k) new edges from the new main branch). As an example, Fig. 3.7 shows the 
construction of the C5-valued B2

5) from C4-valued B2
4) via the C5-valued B2

8). 

4. FURTHER SPANNING TREES OF HYPERCUBES 

4.1. Definition. For n ^ 3, any graph homeomorphic to an n-star will be called 
an n-quasistar. 

The paths joining the centre of an n-quasistar with its leaves will be called rays 
of a quasistar and will be denoted by Ru ..., Rn. A ray is even (odd), if its length — 
i.e. the number of edges in it — is even (odd). 

Fig. 4.1 shows two different 3-quasistars. 

Fig. 4.1. 

4.2. Remark. A bipartite graph is called balanced, if it may be regularly coloured 
by colours cl9 c2 in such a way that the number of vertices coloured by cl equals 
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that of vertices coloured by c2. Obviously, Qn is balanced (n ^ 1) and if Tis a span­
ning tree of Qn, then |V(T)| = 2n, maxdeg (T) g n and Tis balanced as well. Further, 
an H-quasistar is balanced if and only if it has just one odd ray. 

4.3. Proposition. Let S be a balanced 3-quasistar with \V(S)\ = 2" for some 
n = 3. Then S is a spanning tree of Qn and there is such an embedding of S into Qn 

that the images of the end-vertices of the two even rays of S have distance 2 in Qn. 

Proof. The proof proceeds by induction on n. A 3-quasistar 5 is uniquely deter­
mined by the triple (rl9 r2, r3) of positive integers rt g r 2 = r3> denoting the lengths 
of its rays. There are exactly two balanced 3-quasistars having 8 vertices; these are 
(1, 2, 4) and (2, 2, 3) and both of them are embeddable in Q3 (and therefore also its 
spanning trees). Their embeddings satisfying the condition on the end-vertices of the 
even rays are shown in Fig. 4.2. 

\1 ^ r> A O \2 

Fig. 4.2. 

Assume now n > 3, let S = (rl9 r2, r3) be a balanced 3-quasistar with rays Rl9 R2, 

R3, let \V(S)\ = 2n and hence r1 + r2 + r3 = 2" - 1. Recall that rt = r2 = r3, 

1. Suppose r3 = 2 M - 1 , let e.g. rt be even (in the case of rt odd and r2 even we 
proceed quite similarly). From 2.2 we conclude that it is possible to construct a Q . r 
valuation of the path of length 2 " - 1 - 1 formed by Rx and R2 so that 0(Rt) = {l, 2}. 
We shall now extend this valuation to a Cn-valuation of the whole S as follows: 
the edge of R3 incident with the centre of S obtains the value n and the remaining 
part of R3 which is a path of length 2"" 1 - 1 will be Q.^valued (using e.g. the basic 

length...2n'i-1 
0... {1} 

*з 

Fig. 4.3. 

length...even 
0...I1.2} 
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Q-j-valuation) so that 0(R3) = {1}. The valuation obtained is obviously a Cn-
valuation of 5; moreover, if we denote by Rt + JR3 the path formed by Rx and JR3, 
then 0(Rt + R3) = {2, n), q.e.d. (cf. Fig. 4.3). 

2. Suppose now r3 > 2 n _ 1 , let e.g. rx be even. It follows by induction that there 
is a Cn-1 -valuation of a 3-quasistar (r1? r2,r3 — 2n _ 1) with rays Rx, R2 and R'3 

(where R3 arises from R3 by removing the path of length 2n _ 1). Moreover, if r3 is odd, 
then 0(R! + R2) = {l, 2}; if r3 is even, then 0(RX + R3) = {l, 2}. In both cases 
we extend this valuation by assigning values to edges of R3 — R3 as follows: the 
edge nearest to the centre of S obtains n, the remaining path p of length 2 n _ 1 — 1 
will be Cfl.j-valued (using again e.g. the basic Cn-X-valuation) in such a way that 
0(p) = {l}. Obviously we obtain a Cn-valuation of 5; if r3 is odd, 0(KX + R2) = 
= {1, 2}; if r3 is even, 0(Rt + R3) = {2, n}), q.e.d. (cf. Fig. 4.4.). 

length...2n"'- 1 

*> 
length... even 

Fig. 4.4. 

3. Suppose r2 > 2n~2 (and therefore also r3 > 2n~2). We remove the paths of 
length 2n~2 from JR2 and R3 and obtain in this way a 3-quasistar S' = (rl9 r2 — 2n~2 , 
r3 — 2n~2) with rays Rl9 R2, R3. It follows by induction that there is a C,,_-^valua­
tion of 5 ' satisfying the additonal condition concerning the end-vertices of the even 
rays. Again we will extend this Cn-1 -valuation to the Cw-valuation of the whole S; we 
proceed as follows: 

3a. If r2 and r3 are even, then \0(R2 + K3)| = 2. Consider a canonical decom­
position of Qn into Qn-t a n d Q ^ . j ; by induction there is an embedding of 5' in Q'n_1 

such that the images u' and v' of the end-vertices of R2 and R'3 have distance 2 in Q'n_ x. 
We assign value n to the first edges (nearest to the centre of 5) removed from R2 

and R3. This means (in terms of the embedding) a transition from Q'n_1 into Q„-l. 
The vertices u, v obtained in this way have again distance 2; choose vertices u" and v" 
in Qn-i such that Q(U, U") = Q(V, V") = 1, Q(U", V") = Q(U, V) = 2. According to 2.7 
there are two vertex-disjoint paths pl9 p2 in Q'„- 2 such that pt joins u with u", p2 joins 
v with v" and both px and p2 have length 2n~2 — 1. Hence we can use pt and p2 for 
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embedding the parts of R2 and R3 removed from them at the beginning, q.e.d. (cf. 

Fig. 4.5). 

length...Zn'2-1 

/?, 

Fig. 4.5. 

3b. Let Yj be even (and therefore r2 ^ r3 (mod 2)). Without loss of generality 
let r2 be even. Again, there is an embedding of S' in Q'n-t such that 0(R1 + R'2) = 
= {1, 2}; the first edges removed from R2 and R3 will be assigned n. The vertices u 
and v obtained in this way in Qn_ x of the canonical decomposition of Qn have an 

>W* 

length. 2n'2-i 
0.J1) 

0(^*^1=11,2} 

Ъ 

length...Zr"í-1 

Fig. 4.6. 
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odd distance; in order to extend the existing valuation to the whole S we use again 
2.7 in such a way that \0(Rt + R2)\ = 2 (cf. Fig. 4.6). 

4. Suppose that neither the case 1 nor 2 nor 3 holds. Then necessarily rt = r2 = 
= 2n~2 and r3 = 2""1 - 1. To see it recall that rl=^r2 = r3 and rt + r2 + r3 = 
= 2n - 1. Hence rt + r2 < 2n~x implies r3 ;> 2""1 and the case 1 or 2 would follow; 
therefore rt + r2 ^ 2""1 and since rt :g r2 and r2 ^ 2"~2 (otherwise the case 3 
would take place), the desired equalities follow. 

In order to construct a Cn-valuation of 5 we proceed in this case as follows (cf. 
Fig. 4.7): assign to edges of Rt (which is of length 2"~2) from the end to the centre 
of 5 the values of the basic C„_2-valuation; to the edge incident with the centre give 
the value n — 1; to edges of R2 (which is of length 2n~2 as well) we assign (from the 
centre to the end) again the values of the basic C„_2-valuation, while the edge in­
cident with the leaf obtains n. The edges of JR3 (of length 2""1 — 1) are treated in 
the following way: the edge incident with the centre obtains n, the others (in the 
direction to the leaf) the values of the basic C^-^-valuation, the last value ( = 1) not 
being used, since the length of the whole R3 is only 2n~ l — 1. Thereafter we inter­
change the values n — 1 and n — 2. It may be easily checked that the valuation of 5 
obtained is its C^-valuation fulfilling 0(RX) = {n — 2, n — l} , 0(R2) = {n — 2, n}, 
therefore \0(Rt + R2)\ = 2, which completes the proof of the whole proposition. 

Ri... lengih... 2nt 

R3...length... 2*-'-1 
O—O O—O-

Z n-2 

Fig. 4.7. 

The following statement describes another class of spanning trees of hypercubes. 

4.4. Proposition. Let Tbe a tree fulfilling the following conditions: Tis balanced, 
\V(T)\ = 2wf0r some n ^ 3, maxdeg (T) = 3 and T has exactly 2 vertices of degree 
3. Then Tis a spanning tree of Qn-
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Proof. A tree Tfulfilling the assumptions is uniquely determined by the 5-tuple 
of positive integers (rl5 r2, a, r3, r4), where r-, ..., r4 are the lengths of the four 
rays J~1?..., K4 of Tand a is the length of the axial path A of T(cf. Fig. 4.8). 

Fig. 4.8. 

We have a + rt + r2 + r3 + r4 = 2" — 1, assume without loss of generality 
ri + r2 g r3 + r4. 

1. Let r3 + r4 > 2" - 1; suppose e.g. r3 :g r4. If r3 > 2, then it is possible to 
remove an even positive number of edges both from R3 and R4 in such a manner 
that altogether 2W_1 edges are deleted; the tree (rl9 r2, a, r3, r4) obtained in this way 
has 2n~x — 1 edges and obviously is balanced. Therefore (by induction), it is a span­
ning tree of Qn-i\ let us assign n to the first edges of the removed parts of R3 and R4 

(in terms of the embedding this means a transition from Q'n-1 to Ql_ x in the canonical 

length...odd 

length...odd 

Fig. 4.9. 

decomposition of Qn into Qn-i and Qi'-i). Since the remaining parts of R3 and /*4 

have odd lengths it is possible to extend the construction of the C„-valuation to the 
whole T according to 2.4 or 2.5 (cf. Fig. 4.9). 

We proceed similarly also in the case r3 = 2 — then we remove the whole R3 and 
obtain a balanced 3-quasistar (rl5 r2, a + r4 — 2""1 + 2) (cf. Fig. 4.10). 

Let now r3 = 1, then r4 ;> 2""1. We delete 2 n _ 1 edges from R4 and obtain either 
a quasistar or a tree (rl5 r2, a, 1, r4 — 2""1); both of them are spanning trees of Qn-t. 
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Let us extend the corresponding Q.^valuat ion as follows: the first edge obtains n 
(as usual it means a transition to Qn-t in a canonical decomposition) and for the 
remaining path of length 2M_1 — 1 we can use e.g. the basic Cn_^valuation, q.e.d. 

Fig. 4.10. 

length... 
2n~1-3 

2. Let r3 -f r4 < 2 n _ 1 (and therefore r\ + r2 < 2n~l as well). Then there is an 
edge of the axial path such that by removing it we obtain from Ttwo graphs having 
2""1 — l edges which are either balanced 3-quasistars or paths. Hence, by induction, 
they are spanning trees of Qn-x and it suffices to take their corresponding Cn„r 

valuations and to assign n to the edge that has been previously removed. 

3. Let r3 + r4 = 2"_ 1 , both r3 and r4 being even. We delete from T the whole 
rays R3 and R4 and obtain in this way a balanced 3-quasistar S which is a spanning 
tree of Qn-.t. Let u be a vertex of Tincident with K3, R4 and A (then u is obviously 
a leaf of S — cf. Fig. 4.11). We extend an existing C,. ̂ -valuation of 5 to the whole T 
as follows: change the value i of the (only) edge of S incident with u to n and assign n 
also to the last edge of R4. Let R4 denote the rest of R4 after removing the last edge; 
it is possible (using 2.2) to construct a Cn-i-valuation of R3 + R4 (whose length is 
2n~1 — I) such that 0(R'4) = {i}. Then it may be easily checked that in this way a C„-
valuation of T arises, q.e.d. 

L.oc/4 

Fig. 4.11. 
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4. Let r3 -f- r4 = 2""1 , both r3 and r4 being odd. Since Tis balanced, rXi r2 and a 
have to be odd as well. We proceed as follows (cf. Fig. 4A2): let w be the vertex of A 
whose distance from the common vertex of R3 and R4 equals 1 (if a = 1, then u is 
incident with both R± and R2); let us remove from Tthe whole R3 and R4 and also 

even 

Fig. 4.12. 

the last edge of A (incident with u). Denote the graph obtained by S. Obviously S 
has 2 n _ 1 — 2 edges; if a > 1, then 5 is a non-balanced 3-quasistar (r1? r2, a — 1), 
if a = 1, then 5 is a path. Add for a moment a new edge to Rx in S, let S' be the graph 
obtained and let v be the new end-vertex of the extended Rt in Sf. Denote by p the 
path in Sf joining u and v. We shall construct a C„^-valuation of S' such that 
10(77)! = 2; use for it 3.3 in case that a > 1 and therefore Sf = (rt + 1, r2, a — 1) is 
a balanced 3-quasistar, and 2.2 if a = 1 and S" is a path. This Cn^1 -valuation par-
tialized to S will be the starting point of the construction of the desired Crt-valuation 
of T: let us assign n to the last edge of A (having been previously removed) and also 
to the last edge of K4; further, we construct a C„_ x-valuation of the remaining part R4 

of R4 and of the whole R3 in such a way that 0(R4) = O(P). It may be easily checked 
that we have obtained a C„-valuation of T, q.e.d. This completes the proof of the whole 
proposition. 

5. CONCLUDING REMARKS, OPEN PROBLEMS AND CONJECTURES 

The propositions proved in the previous sections might be useful when trying to 
solve the following 

5.1. Open problem. Characterize the spanning trees of Qn\ 

Let us note here that the conditions mentioned in 4.2, necessary for Tto be a span­
ning tree of Qn (namely, that \V(T)\ = 2n, Tis balanced and maxdeg (T) = n) are not 
sufficient. In order to see this start from the so called 4-tomic tree on 2 levels of 
edges, denoted by T2

(4) (cf. Fig. 5.1). It is proved in [4] that for k _t 2, dimT2
(fe) = 
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= ](3A: + l)/2[, hence dim T2
(4) -= 7. We can easily construct (by adding new 

vertices and edges to T^4)) a balanced tree T with 64 vertices and maxdeg (T) = 5 
such that dim T ^ 7; hence, T cannot be a spanning tree of Q6. 

Fig. 5.1. 

On the other hand, it seems not quite hopeless to try to strengthen further 4.4 
(cf. also 4.3J, possibly to the following 

5.2. Conjecture. Let T be a balanced tree, \V(T)\ = 2n, maxdeg (T) ^ 3. Then T 
is a spanning tree of Qn. 

We recall in this connection that [8] contains two examples of spanning trees of Qn 

with maximal degree 3 having a large number of vertices of degree 3. 
Another way of generalizing 4.3 is the following 

5.3. Conjecture. Let T be a balanced l-quasistar, \V(T)\ = 2", / g n. Then T is 
a spanning tree of Qn. 

[9] contains the proof of the latter conjecture for / == 4 and 5. 
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