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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON a-CONTINUOUS FUNCTIONS 

TAKASHI NOIRI, Yatsushiro 

(Received October 11, 1982) 

1. INTRODUCTION 

In 1965, O. Njastad [12] introduced a weak form of open sets called a-sets. The 
present author [16] defined a function / : X -» Y to be strongly semi-continuous if 
/ _ 1 (V) is an a-set of X for each open set Vof Yand showed that the images of open 
connected sets are connected under strongly semi-continuous functions. Recently, 
A. S. Mashhour et. al. [10] have called strongly semi-continuous functions a-con-
tinuous and obtained several properties of such functions. In [10], they stated without 
proofs that a-continuity implies ^-continuity and is independent of almost-continuity 
in the sense of Singal [19]. On the other hand, in 1980 S. N. Maheshwari and S. S. 
Thakur [8] defined a function/: X -* Yto be a-irresolute if/_ 1(V) is an a-set of X 
for each a-set Vof Yand obtained several properties of a-irresolute functions. 

The purpose of the present paper is to continue the investigation of a-continuous 
functions. In Section 3, we shall investigate the relationships between a-continuous 
functions and several known functions, for example, almost-continuous, ^-conti
nuous, d-continuous or irresolute functions. In the last section, we shall obtain some 
improvements of the results established in [8] and show that every a-continuous 
function is a-irresolute if it is either semi-open due to N. Biswas [1] or almost-open 
due to M. K. Singal and A. R. Singal [19]. 

2. PRELIMINARIES 

Throughout the present paper, (X, T) and (Y, a) (or simply X and Y) denote topo
logical spaces on which no separation axioms are assumed unless explicitly stated. 
Let S be a subset of (X, T). The closure of S and the interior of S are denoted by Cl(S) 
and Int(S), respectively. The subset S is said to be regular open (resp. regular 
closed) if Int(Cl(S)) = S (resp. Cl(Int(S)) = S). The subset S is said to be oc-open 
[12] (resp. semi-open [7], pre-open [9]) if S c Int(Cl(Int(S))) (resp. S c Cl(lnt(SJ), 
S c Int(Cl(S))). The complement of an a-open (resp. semi-open) set is called oc-closed 
(resp. semi-closed). The family of all a-open (resp. semi-open, pre-open) sets of (X, r) 
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is denoted by Ta (resp. SO(X, T), PO(X, T)). It is known in [12] that Ta is a topology 
for X and Ta c= SO(X, T). 

Definition 2.1. A function f : (X, T) -> (Y5 a) is said to be a-continuous [10] (resp. 
semi-continuous [7]) if f '^V) e Ta (resp.f^(V) e SO(X, T)) for every Ve a. 

In [16], the present author called a-continuous functions strongly semi-continuous. 
However, in this paper we use the term "a-continuous" following A. S. Mashhour 
et. al. [10]. 

Definition 2.2. A function f : X-* Y is said to be almost-continuous (briefly, 
a.cH.) [5] if for each xeX and each neighborhood Voff(x), Cl(f_1(V)) is a neigh
borhood of x. 

It is obvious that a function f: (X, T) -> (Y, a) is a.c.H. if and only if f~*(V) e 
€ PO(X, T) for each Ve a. It is reasonable that A. S. Mashhour et. al. [9] called a.c.H. 
functions pre-continuous. Example 3.1 and 3.2 of [11] show that the concepts of 
4 tax.H." and "semi-continuous" are independent of each other. 

Definition 2.3. A functionf : (X, T) -> (Y, a) is said to be almost-continuous (briefly, 
a.c.S.) [19] (resp. 8-continuous [4], weakly-continuous [6]) if for each xeX and 
each Ve a containingf(x), there exists U e T containing x such thatf(U) c Int(Cl(V)) 
(resp.f(Cl(U)) c= Cl(V),f(U) cz C1(V)). 

Definition 2.4. A function f: X -> Y is said to be rj-continuous [3] if for every 
regular open sets U, V of Y, 

(\) f~\V) czlnt(C\(f-l(V))) and 
(2) Int^Kf-^U n V))) = lnt(C\(f-\U))) n Int(C\(f-\V))). 

Remark 2.5. For a function f : X -> Y, the following implications are known ([3], 
[19]): 

continuous => a.c.S. => ^-continuous => 6-continuous => weakly-continuous. 

3. a-CONTINUOUS FUNCTIONS 

Lemma 3.1. Let A be a subset of a space (X, T). Then A is oc-open in (X, T) if and 
only if A is semi-open and pre-open in (X, T). 

Proof. Necessity. Let A ex7-. By the definition of a-open sets, we have A c 
c lnt(Cl(A)) and A c Cl(Int(A)). Therefore, we obtain A e SO(X, T) n PO(X, T). 

Sufficiency. Let A e SO(X, T) n PO(X, T). Since A e SO(X, T), A a Cl(Int(A)) 
and hence it follows from A e PO(X, T) that 

A cz Int(Cl(AJ) c Int(Cl(Cl(Int(A)))) = Int(Cl(lnt(A))). 

Therefore, we have A e T*. 
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In [17, Theorem 1], V. Popa showed that every a.c.H. and semi-continuous 
function is weakly-continuous. Furthermore, in [10, Theorem 3.2] A. S. Mashhour 
et. al. obtained the result that every a.c.H. and semi-continuous function is a-con-
tinuous. As an improvement of these results, we have 

Theorem 3.2. A function f : X -> Y is a-continuous if and only iff is a.c.H. and 
semi-continuous. 

Proof. This is an immedaite consequence of Lemma 3.L 

Definition 3.3. A function / : (X, T) -> (Y, a) is said to be strongly t]-continuous 
i f / i s a.c.H. and for every U, Ve a, 

Int(C\(f-\V))) n Int(C](f-\V))) c Int(Cl(/-1(U n V))) . 

Lemma 3.4. A function f : (X, T) -> (Y, a) is strongly t]-continuous if and only if 
for every U, Vea, 

(1) f~\V) Clnt{Cl(f-\V))) and 

(2) IntlCltr'tU n V))) = lnt(Cl(f-l(U))) n Int(Cl(/-1(V))). 

Proof. It is obvious t h a t / i s a.c.H. if and only if/satisfies (1). We assume t h a t / 
is strongly ^-continuous, and show equality (2). For any U, Ve a, it follows from (1) 
that 

f-\U n V) c lnt(C\(f-\U))) n lnt(C\(f-\V))). 

Since the intersection of two regular open sets is regular open, we obtain 

Int(Cl(/-1(U n V))) c Int(Cl(/-1(t!j)) n lnt(Cl(f-\V)) . 

Hence, equality (2) holds. 

Lemma 3.5. Let A and B be subsets of(X, T). If either A e SO(Z, i j o r B e SO(AT. T), 
then 

Int(Cl(^ n B)) = Int(Cl(A)) n Int(Cl(B)) . 

Proof. For any subsets A,BczX, we generally have 

Int(Cl(A n B)) c Int(Cl(A)) n Int(Cl(B)). 

Assume that A e SO(X, x). Then we have C1(A) = Cl(Int(A)). Therefore, 

Int(Cl(A)) n Int(Cl(B)) = Int(Cl(Int(Cl(A)) n Int(Cl(B)))) <= 

Int(Cl(Cl(^) n Int(Cl(B)))) = Int(Cl(Cl(Int(A)) n Int(Cl(B)))) cz 

Int(Cl(lnt(Ai) n C1(B))) <= Int(Cl(Int(^) n B)) c Int(Cl(4 n B)). 

This completes the proof. 
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Theorem 3.6. If a function f : (X, T) -* (Y, a) is x-continuous, then f is strongly 
r\-continuous. 

Proof. Since / is a-continuous, by Lemma 3.1 /_ 1(V) <-= TaePO(X, T) for any 
Vea and hence f~\V) c lnx(C\{f-\V))). Furthermore, f~\U), f~\V)exa c 
cz SO(X, T) for any U, Vea, and hence by Lemma 3.5 we have 

IntiClif-^U n V))) = I n t ( C l t r ^U))) n IntfClCT1^))) . 

It follows from Lemma 3.4 that / i s strongly //-continuous. 

A strongly //-continuous function need not be a-continuous as the following 

example shows. 

Example 3.7. Let X = {a, b, c, d} and T = {0, {d}, {a, c], {a, c, d},X}. Let y = 
= {x, y, z} and a = {0, {x}, {z}, {x, z}, Y}. Define a function / : (X, T) -• (Y, a) 
as follows:/(a) = x,f(b) = f(c) = y and/(d) == z. Then / i s strongly //-continuous 
but is neither a-continuous nor a.c.S. 

Theorem 3.8. Every strongly rj-continuous function is n-continuous. 

Proof. Since every regular open set is open, this follows immediately from Lemma 
3.4. 

Since every a.c.S. function is //-continuous [3, Proposition 3.3], the following 
example shows that the converse to Theorem 3.8 is not true in general. 

Example 3.9 (Singal and Singal [19]). Let X be the set of real numbers and T the 
co-countable topology for X. Let Y = {a, b} and a = {0, {a}, Y}. Define a function 
/ : (X, T) -» (y, a) as follows: f(x) = a if x is rational and f(x) = b if x is irrational. 
Then,/ is a.c.S. [19, Example 2.1]. However, since/is not a.c.H., it is neither strongly 
//-continuous nor a-continuous. 

Examples 3.7 and 3.9 show that "strongly //-continuous" and "a.c.S." are indepen
dent of each other. Futhermore, the following example and Example 3.9 show that 
"a-continuous" and "a.c.S." are independent of each other. 

Example 3.10. Let X = {a, b, c, d} and 

T = {0, {c}, {d}, {a, c}, {c, d}, {a, c, d}, X} . 

Let y = {x, y, z} and a = {0, {x}, {y}, {x, y}, Y}. Define a function / : (X, T) -> 
-> (y, a) as follows: f(a) = z and f(b) = f(c) = /(d) = y. Then / is a-continuous 
but it is not a.c.S. 

A function / : (X, T) -+ (Y, a) is said to be irresolute [2] if / _ 1 (V ) e SO(X, T) for 
every Ve SO(y, a). We shall show that "a-continuous" and "irresolute" are in
dependent of each other. 
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Example 3.11. Let X = {a, b, c}, % = {0, {a}, {b}, {a, b},X} and a = (0, {a}, 
\b,c},X}. Let f : (X, T) ->(X, a) be the identity function. Then f is irresolute but it 
is not a-continuous. 

Theorem 3.12. Not every %-continuous function is irresolute. 

Proof. Assume that every a-continuous function is necessarily irresolute. Let 
f: X -> 7 be a-continuous. Let xeX and let V be any open set of 7 containing 
f(x). Since f is irresolute and Int(Cl(V)) is semi-closed in 7, f_1(lnt(Cl(V))) is semi-
closed and hence 

Int(Cl(/-'(fat(Cl(v))))) cz /- ' (Int(Cl(V))) . 

By Theorem 3:2, f is a.c.H. and hence 

xef-\V) c / - ^ I n t ( C l ( 7 ) ) ) c IntfCl^-^In^CKK))))). 

Put U = I n ^ C ^ / ^ I n t ^ V ) ) ) ) ) , then U is an open set of X containing x and 
f(U) c Int(Cl(V)). This shows that every a-continuous function is a.c.S. This 
contradicts Example 3.10. 

A function f: X -> 7 is said to be d-continuous [14] if for each xeX and each 
open neighborhood Vof f(x), there exists an open neighborhood U of x such that 
f(Int(Cl(U))) c Int(Cl(V)). In [14], it is shown that every ^-continuous function is 
a.c.S. and ^continuity and continuity are independent of each other. Example 4.4 
of [14] shows that there exists a ^-continuous function without being a-continuous. 
Furthermore, Example 4.5 of [14] shows that a continuous (hence a-continuous) 
function is not necessarily ^-continuous. Therefore, we see that the concepts of 
a-continuity and ^-continuity are independent of each other. 

4. a-IRRESOLUTE FUNCTIONS 

Definition 4.1. A function f: (X, T) —> (7, a) is said to be ^-irresolute [8] if 
f-^GT* for every Veer*. 

Every a-irresolute function is a-continuous but a continuous function is not neces
sarily a-irresolute [8, Example 1]. Therefore, the concept of a-continuous functions 
is strictly weaker than that of a-irresolute functions. 

In [16, Theorem 3.6], the present author showed that the images of open connected 
sets are connected under a-continuous (strongly semi-continuous) functions. In 
[8, Theorem 2], it is shown that if a functionf : X -> 7 is a-irresolute and A is a-open 
and closed in X then the restrictionf | A : A -> 7is a-irresolute. We shall obtain the 
improvements of these results. For this purpose, the following lemma is very useful. 

Lemma 4.2. (Mashhour et. al. [10]). Let A and Vbe subsets of(X, x). If Ae PO(X, T) 
and Vex", then A n Ve(T/A)*, where (t/A)* denotes the family of all oc-open sets 
in the subspace (A, rjA). 
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Theorem 4.3. If f : (X, T) -» (Y, a) is ^-continuous and A is a pre-open and con-
nected set of(X, T), thenf(A) is connected. 

Proof. Let fA : (A, x\A) -+ (f(A), <r\f{A)) be a function defined by fA(x) = f(x) 
for every x e A. We show that / * is a-continuous. For any VA e <r\f(A), there exists 
Veo- such that VA = Vn/(A). Since / is a-continuous, f~\V)e xa and hence by 
Lemma 4.2, (fA)~l (VA) = f~l(V) n As{x\Af. Therefore, fA is a-continuous and 
hence fA(A) = f(A) is connected [16, Theorem 3.1]. 

Theorem 4.4, If f : (X, T) -> (Y, a) is a-irresolute and A e PO(X, T), then the 
restriction f\A:(A, x\A) -» (Y, a) is a-irresolute. 

Proof. Let Ve <ra. Since / is a-irresolute, f~l(V)eza. By Lemma 4.2, 
(f\A)~1(V) = / " 1 ( V ) n A e ( T / A ) a because A e PO(X, T). This shows that f\ A 
is a-irresolute. 

A point x e X is said to be a 5-cluster point of a subset S cz X [20] if S n V =j= 0 
for every regular open set Vcontaining x. A subset 5 is called S-closed if all (5-cluster 
points of S are contained in 5. The graph G(f) of a function/ : X -* yis said to be 
S-closed if G(/) is (5-closed in the product space X x Y. It is known that i f / : K -> Y 
is (5-continuous and y is Hausdorff then G(f) is (5-closed [14, Theorem 5.2]. As an 
improvement of this result, we have 

Theorem 4.5. If a function f: X -» y is 6-continuous and Y is Hausdorff, then 
G(f) is 5-closed. 

Proof. Let (x, y) $ G(f). Then y + / ( * ) and there exist disjoint open sets V, W 
of y such that / (x) e Vand yeW. Since Vand JVare disjoint open, we have Cl(V) n 
n Int(Cl(JV)) = 0. Since / is 0-continuous, there exists an open set U containing x 
such that /(C1(U)) c C1(V). Therefore, we obtain /(Int(Cl(U))) n Int(Cl(FF)) = 0. 
It follows from [14, Theorem 5.2] that G(f) is (5-closed. 

Corollary 4.6. Iff :X -*Yis a-continuous and Yis Hausdorff, then G(f) is d-closed. 

Proof. Every a-continuous function is ^/-continuous by Theorems 3.6 and 3.8 and 
every ^-continuous function is 0-continuous [3, Proposition 3.3]. Thus, this im
mediately follows from Theorem 4.5. 

Corollary 4.7. (Maheshwari and Thakur [8]). Iff: (X, T) -» (Y, a) is oc-irresolute 
and (y, aa) is Hausdorff, then G(f) is cx-closed. 

Proof. We show that if (Y, <ra) is Hausdorff then so is (Y, a). Since (Y, ca) is 
Hausdorff, for distinct points x,yeY there exist U, Ve a* such that xeU, y e V 
and U n V = 0. Then we have Cl(lnt(U)) n Int(V) = 0 and hence 

Int(Cl(Int(U))) n Int(Cl(Int(V))) = 0 . 
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Moreover, x e U c Int(Cl(Int(U))) and y e V c Int(Cl(Int(V))). This shows that 
(y, a) is Hausdorff. It is obvious that (5-closedness implies closedness and closedness 
implies a-closedness. 

Remark 4.8. In [18], I. L. Reilly and M. K. Vamanamurthy showed that if ( y ax) 
is Hausdorff then so is (Y, a). However, as their proof is complicated, we gave a simple 
one. 

Theorem 4.9. If f, g : (X, T) -* (Y, a) are ^-continuous and (Y, a) is Hausdorffy 

then the set {xeX \f(x) = g(x)} is oc-closed. 

Proof. A function / : (X, T) -> (Y, a) is a-continuous if and only if fa : (X, T*) -• 
-+ (y, a) is continuous, where fa is the function defined by /a(x) = f(x) for every 
xeX. Since (Y9 a) is Hasudorff, the set {xeX \fa(x) = ga(*)} is closed in (X, Ta). 
Therefore, {xeX \f(x) = g(x)} is a-closed in (X, T). 

Corollary 4.10. (Maheshwari and Thakur [8]). If f, g : (X, x) -» (Y, a) are a-
irresolute and (Y,a*) is Hausdorff, then the set {xeX\f(x) = g(x)} is a-closed 
in (X, T). 

Proof. Since (Y, aa) is Hausdorff, (Y, a) is Hausdorff. Thus, this is an immediate 
consequence of Theorem 4.9. 

We shall conclude the section by giving two sufficient conditions for an a-con
tinuous function to be a-irresolute. A function/ :X -» y i s said to be almost-open 
[19] if f(U) is open in yfor every regular open set U of X. A function/: (X, T) -> 
(Y,a) is said to be semi-open [1] (resp. pre-open [9]) if f(U)e SO(Y, a) (resp. 
f(U) e PO(y, a)) for every U e T. In [9], it is noted that pre-openness is equivalent 
to almost-openness in the sense of Wilansky [21]. It is known that every a-continuous 
pre-open function is a-irresolute [10, Theorem 3.3]. We shall show that an a-con
tinuous function is a-irresolute if it is either almost-open or semi-open. For the rela
tionship between "almost-open", "semi-open" and "pre-open" we have 

Remark 4.11. In [15], it is shown that for a function f :X -> Ythe concepts of 
almost-openness, semi-openness and pre-openness are independent of each other. 

Lemma 4.12. Let A and B be subsets of(X, T). Then 

(1) A G Ta if and only if there exists Ve % such that V c A c Int(Cl(V)). 

(2) / / A e Ta and A c B c Int(Cl(A)), then B e z*. 

Proof. Sirice (1) is obvious, we prove (2). Since A e Ta, 

B c Int(Cl(^)) c Int(Cl(Int(Cl(lnt(A))))) = 

= Int(Cl(Int(A))) c Int(Cl(lnt(.9))). 

This shows that B 6 T*. 
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Theorem 4.13. If f : (X, T) -> (Y, a) is almost-open and cc-continuous, then f is 
a-irresolute. 

Proof. Let B be any a-open set of (Y, a). By Lemma 4A2, there exists Ve a such 
that V c B c Int(Cl(V)). Since / is a-continuous,f_1(V) e T* C SO(X, T) and hence 
/ - ^ J c C l ( I n t ( / - ^ ) ) j . Put 

F= Y-f(X-Cl(Int(f-\V)))). 

Then F is closed in Y because f is almost-open and C\(lnt(f \V))) is regular closed. 
Furthermore, we obtain V c F andf_ 1(F) c C\(lnt(f~\V))). Thus, f~\C\(V)) c 
c Cl(Int(f_1(V))) which implies 

f-\V)czf~\B) czf-\lnt(C\(V))) c 

c Int(Cl(Int(/-Hlnt(Cl(F)))))) <= I n t ^ f " 1 ^ ) ) ) . 

It follows from Lemma 4A2 t h a t f " 1 ^ ) e Ta. This shows that f is a-irresolute. 

Let S be a subset of X. The intersection of all semi-closed sets containing S is called 
the semi-closure of S and denoted by sCl(S). 

Lemma 4.14. If S is a subset ofX, then Int(Cl(Sj) c sCl(S). 

Proof. Let x e Int(Cl(S)) and let G be any semi-open set of X containing x. There 
exists an open set U of X such that U c G c C1(U). Since x e G c C1(U) and 
JC e Int(Cl(S)), 

0 * Int(Cl(S)) nU a C\(S) nU cz C\(S n U) . 

Therefore, we have S n U =t= 0 and hence S n G =)= 0. This shows that x e sCl(S) 

Lemma 4.15. (Noiri [13]). A function f : X -» Y is semi-open if and only if 
f'\sC\(B)) c Cl(f_1(B))f0r every subset B of Y. 

Theorem 4.16. If f: (X, T) -> (Y, a) is semi-open and a-continuous, then f is 
a-irresolute. 

Proof. Let B be any a-open set of (Y, a). By Lemma 4.12, there exists Ve a such 
t h a t V c B c Int(Cl(V)). Since f is a-continuous,f"1(Int(Cl(V)))GTa. It follows from 
Lemmas 4.14 and 4.15 that 

f-^IntiC^V))) c In t^ l^n t^ -^ In t^KV J ) ) ) ) ) c 

c Int(Cl(Int(f-l(sCl(F))))) c lnt(C\(f~ \V))) . 

Therefore, we obtain f~\V) cz f~\B) a lnt(Cl(r\V))) and f-\V)ex\ By 
Lemma 4.12,f_1(B) e %*. This shows thatfis a-irresolute. 

The author is grateful to Dr. V. Popa for sending him the English version of [17]. 
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