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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

ALTERNATING CONNECTIVITY OF DIGRAPHS 

BOHDAN ZELINKA, Liberec 

(Received December 8, 1969) 

In this paper we shall consider the most general case of digraphs, i.e. digraphs in 
which loops and multiple edges are admitted. 

We shall introduce some definitions. 

A sequence P = [ul9 el9 vl9 hl9 w2, el9 vl9 hl9 w3, ,.,, wn_1? en_l9 vn„l9 hn_l9 wn] 
where ul9..., un9vl9 ..., 0-,-iare vertices of a digraph Gand el9..., en_l9 hl9..., hn_1 

are edges of G is a ( + — )-alternating path (shortly ( + — )-path) in G from ux to wn 

if and only if et = u~ivi9 h( = ui+iVi for i = 1,..., n — 1. 

A sequence P = [ul9 el9 vl9 hl9 w2, el9 vl9 hl9 w3, ..., wn_1? en_l9 vn_1? hn_l9 wn] 
where ul9 ..., wn, vl9 ..., vn_t are vertices of a digraph G and el9..., en.l9 hl9 ..., hn_1 

are edges of G is a (— +)-alternating path (shortly (— +)-path) in G from u1 to wn, 
if and only if et = v^ui9 ht = vfwi+7 for i = 1,..., n — 1. 

An alternating path is either a ( + — )-path or a (— +)-path. I 
The number n is called the length of the alternating path; thus any alternating 

path of the length n contains 2n edges and 2n + 1 vertjpesc^-i 
If ut + Uj and vt + Vj for i =f= j 9 the alternating path Ph palled almost simple. 

If P is almost simple and moreover ut =|= v} for any i and any 5̂ , the alternating path P 
is called simple. 

An example of an almost simple (H—)-path which is not simple is on Fig. 1. An 
example of an almost simple (—h)-path which is not simple is on Fig. 2. 

Two vertices a and b of a digraph G are called (-1—)-alternatingly connected 
(shortly (H—)-connected), if and only if there exists a (H—)-path P from a to b9 

i.e. the path [ul9 el9 vl9 hl9 w2, ..., wn_1? ^ n _ l 9 vn_ls hn_l5 wn], which is a ( + - ) - p a t h 
and a = ul9 b = wn. Analogously we can define (— +)-connectivity of two vertices. 

If any two vertices of a digraph G are ( + — )-connected or (—h)-connected, we 
say that G is (H—)-connected or (—h)-connected respectively. 

For the sake of simplicity of our considerations we shall consider also alternating 
paths of the length 0. Such a path consists only of one vertex ul9 we say that it con
nects ut with itself. It is at the same time a ( + — )-path and a (— +)-path. 
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The relation of being (+ -)-connected is then reflexive. If P = [Wl,..., uk~\ is 
a (+ -)-path, evidently also [uk9..., u t ] is a (+ -)-path, therefore the relation is 
also symmetric. If we have two (+ ->paths [ui9..., u j , [u[9..., w'J such that uk = 
= u'l9 the sequence [ul9..., uk9 e[9..., MJ] is also a (+ -)-path connecting ux with «;, 

Яg.1 Fig.2 

therefore the relation of being (+ — )-connected is transitive. This relation is an equi
valence on the vertex set of G. Analogously also the relation of being (— + ̂ con
nected is an equivalence on this set. 

Theorem 1. Let two vertices a9b of a digraph G be (-.— \connected. Then they are 
connected by an almost simple (-1—)-path. 

Proof. If a and b are (+ — )-connected, there exists a (+ — )-path P = [ul9 ..., un] 
such that a = ul9b = un. If for / + ;, 1 ^ i ^ », 1 ^ j ^ n we have always ut 4= uj9 

Vi 4= vj9 the path P is almost simple. Let wf = Uj for some i 4= j . Let I and m be the 
least and the greatest respectively positive integer less than or equal to n such that 
ui = um — Uf. We take a path Pt = [ul9..., ht_l9ul9 em9..., M„] It is also a (+ — )-path. 
In this path we have no vertex equal to ut except for ux itself and by this procedure 
no vertices were identified. Thus we have reduced the number of the vertices ut occur-
ing in P more than once. By this way we proceed until u{ 4= Uj for all pairs i, j where 
i 4= I. Similarly we reduce the number of vertices vt occuring in P more than once, 
until there are also no such vertices. The result is an almost simple (+ — )-path. 
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A stronger assertion obtained by changing the expression "almost simple ( + —)-
path" by "simple (H—)-path" is not true. If we consider the almost simple (-.—)-
path on Fig. 1 as a digraph G, we see that uu un are not connected by a simple 
( + - ) - p a t h . 

Theorem 1'. Let two vertices a, b of a digraph G be (—Y)-connected. Then they 
are connected by an almost simple (—Y)-path. 

The proof of this theorem is dual to the proof of Theorem 1. 
In the following we shall use the terms source and sink. A source of a digraph is 

a vertex which is not a terminal vertex of any edge of this digraph. A sink of a digraph 
is a vertex which is not an initial vertex of any edge of this digraph. 

Theorem 2. Let a digraph G without sources be (H—)-connected. Then it is also 
(— +)-connected. 

Proof. Let a, b be two vertices of G, a =j= b. As G is without sources, there exists 
at least one edge e incoming into a and at least one edge e' incoming into b. Let c 
and d be the initial vertex of e and e' respectively. As G is (H—)-connected, there 
exists a (+ — )-path P = \uu ...,uk~\ in G such that ut = c, uk = d. Consider the 
sequence [a, e, uu ..., uk, e', b\. It is a (—h)-path between a and b. As the vertices a 
and b were chosen arbitrarily, we see that G must be ( — +)-connected. 

Theorem 2'. Let a digraph G without sinks be (—Y)-connected. Then it is also 
(H—)-connected. 

A digraph without sources and sinks which is (H—)-connected (and therefore also 
(—h)-connected) will be called alternatingly connected. 

On Fig. 3 we see an example that a digraph obtained from a ( + -)-connected 
digraph by omitting the sources need not be (—h)-connected. Analogously a digraph 
obtained from a (—h)-connected digraph by omitting the sinks need not be ( H — ) -
connected. 

As the relations of being (H—)-connected and of being ( — +)-connected are 
equivalences, they decompose the vertex set Vof G into equivalence classes. If u e V, 
we shall denote by C+~(u) and by C~~+(u) the class of all vertices which are ( + — )-
connected or (—h)-connected with u, respectively. 

Theorem 3. 7f u is a source of G, then C~ +(u) == {w}. 

Proof. The first edge of a ( — +)-path comes to the first vertex of this path. As u 
is a source, it cannot be the first vertex of any (—h)-path of a non-zero length. 
Therefore u cannot be (— +)-connected with any other vertex than u itself. 

Theorem 3'. If u is a sink of G, then C+~(w) = {u}. 
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Theorem 4. Let u be a vertex of a digraph G and C+~(u) be the equivalence class 
of the relation of being (H—\connected which a belongs to. Let b, c be terminal 
vertices of two edges of G whose initial vertices are in C+~(M). Then b and c are 
(— +)-connected. 

Fig. 3 

Proof. Let b', cf be the vertices of C+~(a) such that b'b, crc are edges of G. The 
vertices b' and c' are ( + —)-connected, therefore there exists a (+ —)-path \ul, ..., uk~\ 
such that b' = uu c' — uk. Now take a sequence \b, b'b, ul9 ..., uk, d*c, c]; this is 
a ( — +)-path from bio c. 

Theorem 4'. Let u be a vertex of a digraph G and C~+(u) be the equivalence class 
of the relation of being (—\-)-connected which a belongs to. Let b, c be initial 
vertices of two edges of G whose terminal vertices are in C~ +(a). Then b and c are 
(H—)-connected. 

We say that two classes C+ ~(M), C +(V) where M, V are vertices of G are associated 
to each other, if and only if there exists an edge in G whose initial vertex is in C+ ~(M) 
and whose terminal vertex is in C~ +(v). 

Theorem 5. To each class C+~(u) which is not formed by a sink, exactly one class 
C+(v) is associated. 

Theorem 5'. To each class C~+(v) which is not formed by a source, exactly one 
class C+~(u) is associated. 

These theorems are immediate consequences of Theorems 4 and 4'. 
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If C+ (w) and C +(v) are associated, we define 

C(w, v) = C+"(w) u C~+(v), Cx(w, v) = C+"(w) -*- C"+(v), 

C0(w, v) = C+"(w) n C~+(v) , C2(w, v) = C"+(w) -=- C+"(v). 

Evidently 

C0(w, v) u Cx(w, v) u C2(w, v) = C(w, v) , 

C0(w, v) n Cj(w, v) = C0(w, v) n C2(w, v) = Cx(u9 v) n C2(w, v) = 0 . 

Evidently all vertices of C(w, v) incident with loops are in C0(w, v). 

Theorem 6. For any four vertices al9 bl9 al9 b2 for which C+~(ax) is associated 
with C_+(b1) and C+~(a2) is associated with C~+(b2) and C(al9 bx) =j= C(a2, b2), 
we have 

C(ai9 bx) n C(a29 b2) = [C lva l5 bx) n C2(a2, b2)] u [Cx(al9 b2) n C2(al9 6-)] . 

Proof. We have 

C0(al9 bx) n C(a29 b2) -= C+~(a,)n C"+(bx) n [ C + > 2 ) u C"+(b2)] = 

= [C+"(aO n C"+(bx) n C+-(a2)~ u [C+"(aO n C"+(bx) n C"+(b2)] . 

If C+~(al) = C+"(a2), we must have (according to Theorem 5) also C~+(bl) = 
= C~ +(b2) and thus C(al9 bA) = C(a2, b2). Analogously in the case when C~ +(bx) = 
C~+(b2). As we assume 

C(au bx) * C(a2, b2) , 

we have 

C+ "(a.) * C+~(a2), C~ +(bt) * C" +(j>2). 

As C+"(a1), C+~(a2), C~+(bi), C~+(b2) are equivalence classes, this means 

C+ ' (« i ) n C+"(a2) = 0 , C- +(j>,) n C" +(fc2) = 0 . 

We have 

[C+-(at) n C'+(bt) o C+"(a 2)] u [C + - (« . ) n C-+(6.) n C"+(&2)] = 

= [0 n C~+0>i)] u [C + - (a , ) n 0 ] = 0 u 0 = 0 . 

We have proved that 

Co(au bj n C(a2, b2) = 0 . 

Analogously we can prove 

C(au ft.) n C0(a2) b2) = 0 . 
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Thus 

C(al9 bA) n C(a2, b2) = [C0(al9 bO u Ct{al9 bO u C2(al9 bO] n C(a2, b2) = 

= [C0{al9 bO n C(a2, b2)] u [Cx{al9 bt) n C(a2, b2)] u [C2(al9 bx) n C(a2, b2)] . 

The first term in this union is 0. Take the second term. 

Ct(al9 bj) n C(a2, b2) = Ct(al9 bO n [C0(a2, b2) u Cx(al9 b2) u C2(a2, b2)] = 

= [C^flj, bi) n C0(a2, b2)] u [C^fli, bO n Cj(a2, b2)] u [Cx{al9 bt) n C2(a2, b2)] . 

We have 

Ct{al9 bO n C0(a2, b2) = 0 

because Clval5 bO is a subset of C(al5 bO which has an empty intersection with 
C0(a29 b2), 

Ct{ai9 bO n C,(a2, b2) = 0 

because C1(al9b1) c C+~(aO, Cx(al9b2) c C+~(a2) and C+~(aO, C+~(a2) are 
different equivalence classes. Thus 

Cx(al9 bO n [C0(a2, b2) u Cx(a2, b2) u C2(a2, b2)] = Cx(al9 bO n C2(a2, b2) . 

The third term 

C2(al9 bO n C(a2, b2) = C2(al9 bO n [C0(a29 b2) u Cx(a2, b2) u C2(a2, b2)] = 

= [C2(al9 bO n C0(a2, b2)] u [C2(al9 bO n Cx(a2, b2)] u [C2(a1 bx) n C2(a2, b2)] . 

Analogously we have 

C2(al9 bO n C0(a2, b2) = 0 , C2(a1? bO n C2(a2, b2) = 0 , 
thus 

C2(al9 bO n [C0(a2, b2) u Ct(a29 b2) u C2(a2, b2)] = C2(al9 bO n Ct(a2, b2). 

From this the assertion of the theorem follows. 
Thus if a vertex c is common to two different sets C(al9 bO, C(al9 b2), either all 

edges outgoing from c have terminal vertices in C~+(b2) and all edges incoming 
into c have initial vertices in C+~(ax)9 or all edges outgoing from c have terminal 
vertices in C+(b1) and all edges incoming into c have initial vertices in C + ~(a2). 
All sources in C(a, b) are in C+ "(a), all sinks in C(a, b) are in C" +(b). 

Now we can define the vertex degree of alternating connectivity and the edge 
degree of alternating connectivity analogously to the analogous concepts for the 
connectivity of undirected graphs. 
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Let a, b be two vertices of a digraph G. The vertex degree of (H—)-connectivity 
of the vertices a, b is the number (OQ ~(a, b) defined as follows: 

(a) If a = b, then a>Q~(a, b) = oo. 

(P) If a =# b and there are no loops at a and b and no edge joins a and ft, then 
(OQ ~(a, b) is the minimal number of vertices which must be deleted from G in order 
that a, b might not be (H—)-connected in the resulting digraph. 

(y) If a + b and there are some loops at a or b or some edges joining a and b, then 

(OQ ~(a, b) = (OQ~(a, b) + min (n(a, b), v(b)) + min (ft(b, a), v(a)) 

where G0 is the digraph obtained from G by deleting all loops at a and b and all 
edges joining a and b, fi(a, b) is the number of edges going from a to b, n(b, a) is the 
number of edges going from b to a, v(a) is the number of loops at a, v(b) is the 
number of loops at b in G. 

The vertex degree of (—h)-connectivity of the vertices a, b is the number OJ~ +(a, b) 
defined as follows: 

(a) If a = b, then co~ +(a, b) = oo. 

(P) If a =j= b and there are no loops at a and b and no edge joins a and b then 
co~+(a, b) is the minimal number of vertices which must be deleted from G in order 
that a, b might not be connected in the resulting digraph. 

(y) If a =j= b and there are some loops at a or b or some edges joining a and b, 
then 

°>Q +(a, b) = a>Q+(a, b) + min (/i(a, b), v(a)) + min (n(b, a), v(b)) 

where G0 is the digraph obtained from G by deleting all loops at a and b and all 
edges joining a and b, fi(a, b) is the number of edges going from a to b, fi(b, a) is the 
number of edges going from b to a, v(a) is the number of loops at a, v(b) is the 
number of loops at b in G. 

We shall explain the meaning of the expression 

min (ii(a, b), v(b)) + min (fi(b, a), v(a)) . 

This is the maximal number of edge-disjoint almost simple (-\—)-paths between a 
and b in G not containing any vertex except for a and b. Any of such paths consists 
either of an edge going from a to b and one loop at b, or of an edge going from b to a 
and one loop at a. Analogously 

min (ji(a, b), v(a)) + min (n(b, a), v(b)) 

is the maximal number of edge-disjoint almost simple (—h)-paths between a and b 
in G not containing any vertex except for a and b. 
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Now again let a, b be two vertices of a digraph G. The edge degree of ( + — ̂ con
nectivity of the vertices a, b is the number GQ ~(a9 b) defined as follows: 

(a) If a -= b9 tfien GQ ~(a9 b) = oo. 

(p) If a 4= ft, then GQ ~(a9 ft) is the minimal number of edges which must be deleted 
from G in order that a9 ft might not be (H—)-connected in the resulting digraph. 

Analogously the edge degree of ( — +)-connectivity is defined. 

When studying degrees of alternating connectivity we can help ourselves by 
a certain bipartite undirected graph assigned to a digraph. 

Let G be a digraph with vertices al9...9an. The bipartite undirected graph <3 
assigned to G will be constructed as follows. The vertices of G are ftl5..., bn9 cl9 ..., cn 

(pairwise different). In 6 there exists an edge bxc} (1 ^ i = n9 1 ^ j; — n) if and only 
if the edge afa} exists in G. No two of the vertices bl9 ..., bn and no two of the vertices 
cl9 ...9cn are joined by an edge. To each (-\—)-path from at to a} in G there corres
ponds (in one-to-one manner) a path between ft,, and b} in C To each (—h)-path 
between at and aj in G there corresponds (again in one-to-one manner) a path between 
Ci and Cj in <3. To simple alternating paths in G there correspond simple paths in G. 

In this way the results concerning the edge degree of (+ — )-connectivity and of 
(—h)-connectivity can be obtained directly from the corresponding results for 
connectivity in undirected graphs. We shall express two important results derived 
from the corresponding results in [3]. 

Theorem 7. Let S~ + where k is a positive integer be the relation on the vertex set 
of a digraph G defined so that two vertices a9 ft are in 5 + ~ if and only ifG+~(a9 ft) g: 
^ k. Then S + ~ is an equivalence on this set. 

Theorem T. Let S" + where k is a positive integer be the relation on the vertex set 
of a digraph G defined so that two vertices a9 ft are in S~ + if and only if G~+(a9b) ^ 

= k. Then S^* is an equivalence on this set. 

Theorem 8. Let a9 ft be two different vertices of a digraph G. The maximal number 
of edge-disjoint almost simple ( + —)-paths between a and ft in G is equal to 
^~(a,b). 

Theorem 8'. Let a9 ft be two different vertices of a digraph G. The maximal 
number of edge-disjoint almost simple (—\-)-paths between a and ft in G is equal 
toG~+(a9b). 

The vertex analoga of Theorems 7 and T do not hold, so as the corresponding 
assertions about undirected graphs. The analoga of Theorems 8 and 8' will be 
expressed here as conjecture (they cannot be proved by the mechanical use of the 
bipartite graph technique like Theorems 8 and 8'). 
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Conjecture 1. Let a, b be two different vertices of a digraph G. The maximal 
number of vertex-disjoint (up to a and b) almost simple (-i—)-paths between a and b 
in G is equal to ojQ~(a, b). 

Conjecture 1'. Let a, b be two different vertices of a digraph G. The maximal 
number of vertex-disjoint (up to a and b) almost simple (— +)-paths between a and b 
in G is equal to o)Q+(a, b). 

However, some analoga of Theorems 8 and 8' can be obtained as theorems, if we 
introduce the concept of simple alternating connectivity. 

We say that two vertices a and b of a digraph G are simply (-1—)-connected or 
simply (—h)-connected, if and only if there exists a simple (H—)-path or simple 
(—h)-path respectively joining a and b in G. 

The relation of being simply (H—)-connected is evidently reflexive and symmetric, 
but in general not transitive. Thus its investigation is not of such an interest as the 
investigation of alternating connectivity. The same holds also for the relation of 
being simply ( — -F)-connected. 

Let a, b be two vertices of a digraph G. The vertex degree of simple ( + — ̂ con
nectivity of the vertices a, b is the number COQ ~(a, b) defined as follows: 

(a) If a = b, then COQ ~(a, b) = oo. 
(P) If a =t= b, then COQ ~(a, b) is the minimal number of vertices which must be 

deleted from G in order that a, b might not be simply (H—)-connected in the 

resulting digraph. 
The vertex degree of simple (— -f )-connectivity of the vertices a, b is the number 

COQ +(a, b) defined as follows: 

If a = b, then COQ +(a, b) = oo. 

If a =# b, then COQ +(a, b) is the minimal number of vertices which must be deleted 
from G in order that a, b might not be simply (— -}-)-connected in the resulting 
digraph. 

Now we may express a theorem. 

Theorem 9, Let a, b be two different vertices of a digraph G. The maximal number 
of vertex-disjoint (up to a and b) simple (-.—)-paths between a and b in G is equal 
toa>Q~(a,b). 

Proof. We shall use the bipartite graph Q and the results of [4]. The vertex set of 
the graph G can be decomposed into pairwise disjoint two-element sets {bx, ct} for 
i = 1, . . . , n. There is a one-to-one correspondence between simple (+— )-paths 
joining vertices a{ and a,- in G and simple paths joining vertices bt and bj in & which 
have at most one vertex in common with any pair of vertices {bk, ck} for k == 1, . . . , n. 
Deleting a vertex at in G corresponds to deleting the pair {bh ct} in G. Therefore this 
theorem follows from Theorem 5 of [4]. 
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Theorem 9'. Let a, b be two different vertices of a diagraph G. The maximal 
number of vertex-disjoint (up to a and b) simple(—v)-paths between a and b inG 
is equal to a>~ +{a, b). 

Now we shall investigate closed alternating paths, i.e. such alternating paths in 
which ux = uk (the first vertex coincides with the last). If in a closed alternating path 

w. 4- Uj (except for Mj = uk) and vt 4= Vj for i 4= j9 we call this path an alternating 
almost-circuit. It is easy to show that we need not distinguish (H—)-almost-circuits 
and (—+)-almost-circuits and that generally a closed (-1—)-path is also a closed 
( -+ ) -pa th . 

If two edges ex and e2 of a digraph G lie on the same almost-circuit or are identical, 
we write ex O au ei (analogously to Konig's relation O of [2]). 

Theorem 10. The relation Oait *5 an equivalence on the edge set of the digraph G. 

Proof. Alternating almost-circuits in G correspond to circuits in & in one-to-one 
manner. Thus if kt Oait k2 in G, then the corresponding edges in 6 are in the rela
tion O which is known from [2] and inversely. This relation is an equivalence, thus 
the same holds for Oait-

As Oait is
 a n equivalence, it decomposes the edge set of G into equivalence classes. 

A subgraph of G formed by edges of one equivalence class together with their initial 
and terminal vertices is an analogy to the concept of lobe in undirected graphs. 

But not always any two vertices of such a subgraph are alternatingly connected. 
Let A be such a subgraph. If C is an alternating almost-circuit contained in A, C = 
= [ul9el9vl9 hl9u29 ....9uk_l9ek-l9vk..l9 hk.l9u1"]9

 ei = utvi9 h{ = ui+1Vi for i = 

= 1, ..., k — 1, then ui9 u} for 1 51 i 51 k — 1, 1 51 j g k — I are always ( + — )-
connected and vi9 Vj are (—f-)-connected. From the definition of A it follows that 
if ab9 ai are in A, then a and c are (H—)-connected, b and d are (— +)-connected 
in A. Thus any two initial vertices of edges of A are (H—)-connected, any two terminal 
vertices of edges of A are (—f-)-connected in A. Moreover, the vertex degree of 
( + -)-connectivity of any two initial vertices of edges of A is at least 2 and also the 
vertex degree of (— +)-connectivity of any two terminal vertices of edges of A is at 
least 2. 

The set of all initial or terminal vertices of edges of A will be denoted by A + or A ~ 
respectively. 

Theorem 11. Let A9 B be two different subgraphs of a digraph G such that each of 
them consists of all edges of one equivalence class of the relation Oai t together 
with their initial and terminal vertices. Let A+ and B+ be the set of initial vertices 
of edges of A and B respectively. Let A~ and B~ be the set of terminal vertices of 
edges of A and B respectively. Then each of the intersections A+ n B+

9 A~ n B~ 
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consists at most of one vertex, the intersections A+ n B , A n B+ may have an 
unlimited number of vertices. 

Proof. Let a, b be two vertices of A+ n B+, a + b. The vertices a, b are ( H — ) -
connected in A, therefore there exists an almost simple (+— )-connected in A, 
therefore there exists an almost simple (+ — )-path C between a and b in A. They are 
( + — )-connected also in B, thus there exists an almost simple (+ — )-path C between a 
and b in B. Let a' be a common vertex of C and C such that a' + a, a' e A+ n B+ 

and there exists no vertex on C between a and a' belonging to A+ n B+. Such a vertex 
evidently must exist; it may be a' = b. Consequently the subpaths of C and C 
between a and a' will be Cl9 C[. Their union is evidently an alternating almost-circuit. 
Let k or k' be the edge of C or C respectively beginning in a. Both the edges k and k' 
belong to the above mentioned alternating almost-circuit, thus k Oa . t &'• But k 
belongs to A, k' belongs to B, A + B, which is a contradiction. Thus A+ n B+ can 
contain at most one vertex. The proof for A~ n B~ is analogous. 

Now let us have a digraph G consisting of the (pairwise different) vertices ai9 bh ct 

for i = 1, ..., k and of edges a]b^, b^cj for any i,j, 1 ^ i <I k, 1 ^ j ; <I k. Evidently 
the edges afb} form one equivalence class of Oait»

 t n e edges b^c,- form another 
equivalence class of this relation. Thus A has the vertices au ..., ak, bx, ..., bk and B 
has the vertices bu...,bk, cl9...,ck further A+ = {au ..., afc}, A." = B + = 
= {bl5 ..., bj, B" = [cu ..., c j . We have A" n B + = {bi,..., bj; the number k 
was chosen arbitrarily. Analogously we can prove the assertion for A~ n B+. The 
above defined digraph for k = 5 is on Fig. 4. 

Now we shall state another theorem which can be derived from the corresponding 
theorem about undirected graphs by using the bipartite graph technique. 

Theorem 12. If a, b are two vertices of a digraph G, we have 

co+"(a, b) <; o-+"(a, b), cwj+(a, b) <I <rj+(a, b) . 
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In the end we shall investigate the minimal subgraphs of an alternatingly connected 
digraph with the property that they are alternatingly connected and contain all 
vertices of the giVen digraph. We shall call them alternatingly spanning subgraphs. 

This concept is analogous to the concept of spanning tree in an undirected graph. 
We may again use the bipartite graph 6. As there is a one-to-one correspondence 
between edges of G and edges of (?, between simple (-f — )-paths in G and simple 
paths from bt to bj (for some i and j) in 6, between simple (— +)-paths in G and 
simple paths from ct to Cj in G9 we see that there is also a one-to-one correspondence 
between alternatingly spanning subgraphs of G and spanning trees of G. The unique 
dominating sets for any spanning tree of the bipartite graph G are the sets {bl9 ..., bn}9 

{cl9 ..., cn}. Hence we see that n is the domination number of any such tree. We can 
construct any alternatingly spanning graph with n vertices in the following way. 

Construction (C). Take an arbitrary undirected tree Twith 2n vertices whose domi
nation number is n. The vertex set of the tree Tcan be decomposed into two disjoint 
dominating subsets M, N each of which contains exactly n vertices. Choose an arbi
trary one-to-one mapping cp of M onto N. Then identify any vertex u e M with the 
vertex cp(u) e N. Let no edges be omitted at this procedure (thus loops could occur). 

The result will be formulated as a theorem. 

Theorem 13. By the construction (C) always an alternatingly spanning graph 
with n vertices is created and any alternatingly spanning graph with n vertices 
can be obtained in this way. 

Proof follows from the above considerations. 

Theorem 14. Let G be a digraph with n vertices. Let A be the adjacency matrix of 
the digraph G, let A* be the transposed matrix to A. Let D = | |d.J be the square 
matrix of order n such that dHfor i = 1, ..., n is the outdegree of the vertex at and 
dtj = 0 for i =# j . Let D* = ||d*|| be the square matrix of order n such that d*for 
i = 1, ..., n is the indegree of the vertex at and d*j = 0 for i =# j . Then the number 
of alternatingly spanning subgraphs of G is equal to an arbitrary main minor of 
the matrix 

D -A 

- * * D * 
Proof. The number of alternatingly spanning subgraphs of G is equal to the number 

of spanning trees of <3. This number is equal to an arbitrary main minor of the matrix 
D - A where 6 is the square matrix of the order 2n9 D = | |2y | | , where 3H for 
i = 1, .... n is the degree of bt (the outdegree of at), da for i = n + 1, . . . , 2n is the 
degree of ct _n (the indegree of at _w), Bu = 0 for i =# j9 and A is the adjacency matrix 
of G. If we denote the zero matrix of order n (the matrix whose elements are all ze
ros) by On, we have evidently 
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D = 0„ D* A = 
OnA 
A* O. 

The difference D — A is the matrix of the theorem. 
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