
Časopis pro pěstování matematiky

Tibor Šalát
On nowhere density of the class of somewhat continuous functions in M(X)

Časopis pro pěstování matematiky, Vol. 103 (1978), No. 2, 157--158

Persistent URL: http://dml.cz/dmlcz/108620

Terms of use:
© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/108620
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 103 (1978), Praha 

ON NOWHERE DENSITY OF THE CLASS OF SOMEWHAT 
CONTINUOUS FUNCTIONS IN M(X) 

TIBOR SALAT, Bratislava 

(Received June 18, 1976) 

This paper is closely related to the paper [3] and contains the solution of a problem 
formulated in [3]. 

Let X, ybe two topological spaces. The function f : X -> yis said to be somewhat 
continuous on X if for each set G c Y open in Y the following implication holds: 

f-1(G)*0=>Intf-1(G) + 0 

(cf. [1]). This implies that every functionf: X -> Ycontinuous on Kis also somewhat 
continuous on X. 

Let X be a topological space, let M(X) be the linear normed space (with the norm 
||f|| = sup |f(*)|) of all real-valued functions which are defined and bounded on X. 

teX 

Denote by S(X) and C(X) the set of allfeM(X) which are somewhat continuous 
and continuous on X, respectively. A problem was posed in [3] wheter S(X) is 
a nowhere dense subset of M(X) provided that S(X) # M(X). 

We shall give an affirmative answer to the foregoing question. 
Let us remark that if X is a discrete space then eachfe M(X) is continuous in X 

and hence M(X) = S(X) = C(X). 

Theorem. Let X be a non discrete topological space. Then S(X) is a nowhere 
dense subset of M(X). 

Proof.*) If fe M(X), 5 > 0, put K(f, 5) = {h e M(X); \\h - f | | < d}. According 
to the assumption there exists an x 0 e X such that {x0} is not open in X. Given 
f e M(X), define a real-valued function g on X in the following way: 

1) put g(x0) = f(x0); 

2) if x e X, x * x0, |f(x) - f(x0)| < $5, put #(x) = f(x0) + id; 

3) If x e X, |f(x) - f(x0)| £ *5, put g(x) = f(x). 

*) The author is thankful to the referee for improving the original version of the proof. 
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It follows from the previous definition that for each x e X, x #= x0 we have 

(1) ' \g(x) - f(x0)\ Z }6 . 

Evidently g e M(X). Further, \g(x) - f(x)\ < $5 for all xeX, hence 

(-) \\g-f\\<V. 

We shall show that 

(a) K(g,±d)czK(f,S); 

(b)K(g,ld)nS(X) = 0. 

It follows from (a), (b) by virtue of the well-known criterion of nowhere density 
(cf. [2], p. 37) that S(X) is nowhere dense in M(X). 

Proof of (a). Let h e K(g, |<5). Then using (2) we have 

| A - / | | £\\h-g\\ + \\g-f\\<l5 + ld<5. 

Proof of (b). Let h e K(g, |<5). Put V = (h(x0) - |<5, h(x0) + |(5). Evidently 
x0 e h~l(V). We shall prove that h"\V) = {x0}, hence Int h~x(V) = 0, therefore 
h i S(X). 

Suppose xeX, x =f= x0, h(x)e V. Then \g(x) - h(x)\ < ^5, \h(x) - h(x0)\ < 
< | 5 , \h(x0) - g(x0)\ < \d, g(x0) = / (x 0 ) imply \g(x) - / (x 0 ) | < | 5 , which con
tradicts (1). This completes the proof. 
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