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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

A NOTE ON A HEAT POTENTIAL AND THE PARABOLIC VARIATION 

MIROSLAV DONT, Praha 

(Received January 24, 1974) 

INTRODUCTION 

Let Rn stand for the /t-dimensional Euclidean space (n positive integer). We shall 
deal with the plane R2 in the sequel. Further let *K1 be the real axis together with the 
points 4-00 and - c o . Whenever we say / is a function on a set M we mean / is 
a mapping from M into *R1; a real function on M is a mapping from M into Rl. 
If we speak about a continuous function we always consider a real function. Given I 
a compact interval in K1, ^(I) is defined to be the space of all continuous functions 
on I. We consider ^(I) endowed with the supremum norm topology. 

Let <a, b> be a compact interval in Rl and let cp be a continuous function of 
bounded variation on <a, b>. Conformably to [1] we shall introduce some notations. 
For any point [x, t] e R2 such that t > a we define a function axt on the interval 
<a, min {t, b}) by 

x - (p(r) 
- x . í ( T ) 

- > / ( ' - * ) 

ccx t is always a continuous function of locally bounded variation on the interval 
<a, min {t, b}). Further we define for each continuous function / on <a, b> 

i /»min{f.6} 

(0.1) T/(x, t) = — - - /(r) exp (-a 2 , f ( i)) d a ^ i ) 

whenever [x, t] e R2, t > a and the integral on the right hand side of (0.1) exists 
in the sense of the Lebesgue-Stieltjes integral and is finite. If t g a then we put 
T/(x, 0 = 0. 

It turns out useful to investigate Tf considered as a function on R2 — {[<?(*)> ']> 
t € <a, b>} for a fixed / in connection with the boundary value problem of the heat 
equation in JR2, especially with the Fourief problem (see [1]). 

A theorem concerning the limit value of Tf on the set K = {[<?(*)> t] ; t e <a, b>} 
has been proved in [1], In this paper we shall show some complementary results on 
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that matter and on the parabolic variation. The parabolic variation of the curve cp 
was defined in [ l ] and played the main role in the investigation of the potential Tf. 
In the same way as in [1] we define the so-called parabolic variation with a weight Q. 
Let Q be a nonnegative, lower-semicontinuous and bounded function on the interval 
<a, b>. Let [x, t] e R2. For a, r > 0, a < + oo put 

(0.2) » ? > . - ) - I f i ( t ) , 
T 

where the sum on the right hand side is taken over all T e <a, b} such that 0 < 
< t — T < r and 

<x - < K T ) ^ 2 

ř - т = 
2a 

The parabolic variation with the weight Q and the radius r of the curve cp at the 

point [x, r] is defined by 

(0.3) 
/*oo 

Vк(r;x,t) = e- ' 2 •.?.,(-, a)da 

(see [ l ] , Definition 1.1). Further we denote 

vg(oo; x, r) = V%x, t), VK(r; x, t) = VK(r; x, f), 

VK(x, t) = VK(x, 0 ( [ x , r ] 6 R 2 ) . 

The function V#(r; •) (as a function on R2) is a nonnegative lower-semicontinuous 

function on R2 and is finite on R2 — K (see [ l ] , Lemma 1.2). Further, it holds for 

each r > 0, x e R\ t e Rl, a < t < .b + r that 

/*min{t,/>} 

(0.4) Ve(r; x, r) = Q(r) exp (-a2,,(x)) d var ax,,(x) 
J max {a,t — r} 

1 

(see [1], Lemma 1.1). If t ^ a or t ;> b + r then V^(r; x, r) = 0. 

The parabolic variation is analogous to the cyclic variation introduced in [4] 

(or [3]). It has been found in [6] that there is a smooth curve which has infinite 

cyclic variation at its every point. Now an analogous question arises: is there a con

tinuous function cp of bounded variation on <a, b} such that V*(x, t) = oo for every 

point [x, t] e {[</>(T), T ] ; r e ( a , b>}? This question is investigated in the second 

part of this paper. 

1. 

In this part of the present note we shall show some simple assertions concerning 

the parabolic variation and some complementary assertions concerning limits of 

the potential Tf on the curve (p. 
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Let q> be a continuous function of bounded variation on a compact interval 
<a, b} c Rl and let Q be a nonnegative, lower-semicontinuous, bounded function 
on the interval <a, by. Let the symbols axl, n£f, 7/, K, Vf, V* denote the same as 
in the introduction. 

By the assumptions there is a constant c e Rl such that Q g c on <a, b>. It is 
seen from the definition of the parabolic variation that 

V$(r; x, t) £ c VK(r; x, r) 

for every [x, t] e K2, r > 0. In particular, 

VK(r; x, *) < oo iff Vf(r; x, t) < oo . 

Similarly if 

sup VK(r; x, t) < oo then sup V$(r; x, l) < oo 
[jc.fJeM [jc,f]eM 

for any nonvoid set M cz R2. The converse statement is not valid. Nevertheless, one 
may formulate the following assertion: 

Let t0 e <a, b> and suppose that Q(t0) > 0. Then 

VK(n (p(t0), t0) < oo iff Vf(r; <p(t0), t0) < oo 

for any r > 0. There is, in addition, an interval / c <a, b> which is open in <a, 6> 
such that t0 e / and 

sup VK(r; (p(t), t) < oo <=> sup Vf(r; cp(t), t) < oo . 
tel tel 

One may prove this assertion by means of the equality (0.4) regarding the fact that 
the function Q is lower-semicontinuous. 

Lemma 1.1. Let t0 e (a, fe>, x0 = q>(t0) and suppose that 

-^-^ < oo . (1.1) limsupi 
f-*fo y v * o """ t) 

Then V£(x0, *0) < oo if and only if 

<-> J> d - [^] 
Particularly: VK(x0910) < oo if and only if 

<»> - [ ^ H 
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Proof. If (1.2) holds then surely V£(x0, t0) < oo since 

V%x0,l0)< r°Q(T)dvaraXo,ro(T) 

according to (0.4). 

Suppose now that VK(x0, t0) < oo. It is seen from (1.1) that 

-*M-Vf); -<°")}>0 

so that 
rt0 pro 

V%x0, h) = Q(*) exp (-O£0,,0(T)) d var axo>fo(r) £ c0 Q(x) d var a,0,f0(t) 
J a J a 

and thus (1.2) holds. 
Now it suffices to note that if Q is the function which assumes the constant value 1 

on <a, 6> then the terms in (1.2) and (1.3) are equal. 
In the same way as we defined the parabolic variation we may define a function 

W$(r; •) on R2 putting 
/•oo 

(1.4) W£(r;x,t)==j <,(r , a) da 

(r > 0). Similarly we define W£, WK(r; •) and WK. 
In the same way as (0.4) has been proved (see [1]) one may prove that 

• /»m.n {t,b} 

W£(r;x,f)= e(T)dvarax,,(T) 
J max {a, t - r] 

for any r > 0, [x, i] e R2 with a < t < b + r; particularly 

iyK(x,f) = i v a r i r ^ ^ ; <„, min {f, b})] , 
LV(' - T ) J 

whenever [x, t] e R2, t > a. 
It follows from Lemma 1.1 that if q> is moreover ^-Holder on <a, b) then it holds 

V$(x, t) < oo iff Wg(x, r) < oo 

for any point [x, t] e K. 

Lemma 1.2. Let the function <p be ^-Holder on the interval <a, b}. Then 

(1.5) sup {Fg(x, f); [x, t] e K} < oo 
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if and only if 

(1.6) sup {W$(x, t); [x, t] e K} < co . 

Proof. There is a constant ke R1 such that 

\<p(ti) ~ <p(t2)\ £ M ' i - h\ 

for each pair of points t{, t2 e <a, b>. It is seen from this and from the form of the 
function ccx t that there is a cx > 0 such that 

for every [x, t] e K, t > a, x e <a, t). Hence 

(1.7) . V°(x, t)Zct j"g(T) d var O ^ T ) = c, H^(x, f). 

If c e Rl is a constant such that Q ^ c on <a, b>, then 

V%x, t) ^ c W%x, t). 

From this and from (1.7) the assertion now follows. 

Lemma 1.3. Given a e ( | , 1>, te(a, b> suppose that 

lim sup !*'> ~ *->- < oo . 

Then V$((p(t), t) < oo if and only if 

(1.8) fr G & L d v a r 9 ( t ) < o o . 

Ja V(r - T) 
If<p is evert (X'Holder on the interval <a, b>, then 

(1.9) sup{V£(x,t); [ x , r ]€K} < GO 

if and only if 

(1.10) sup i f - ^ d var <p(x); t e (a, b> I < oo . 
u« V(' - T ) J 

Particularly: if (p is a Lipschitz function on <a, b> t/ieti (1.9) /io/ds. 

Proof. Suppose that 

\<p(t) - <p{t')\ S k(t - tj 

(where k is a suitable real constant) for each t' e <<J, t). 

32 



Then we have 

^(0,t)=[g(T)dvarr[^^|]< 

' =" TV^-- d var'(<?(f) - * » + r QW ^ - ^ ( T ) I d v a r < r - r - 7 ? 7 — . 1 = 

J. 2 v( t - v J. L-vu - T)J 
_. f' _ _ _ _ _ d var * ) + f . ! _ _ _ _ _ ofr) dT < 

J . 2 V ( r - t ) * ' J f l 4 ( r - T ) ^ * ' ~ 

< | " _ _ _ _ _ d var <P(T) + f' —- Q(T) dT . 
- J a 2 V ( t - T ) n )

 J . - K ' - T ) 3 ' 2 - ^ ' 

Since Q is a bounded function and a > -J by the assumption, the last integral is 
finite. Hence (1.8) implies W$(<p(t), t) is finite (and V$(<p(t)9 t) is finite, too). 

In a similar way we obtain the following estimate: 

Г - Є _ _ d var ф(т) < Г - A - N/(< - t) d vart Г _ _ _ _ _ l 

J.v(»-t) w _ J . v e - * ) Lv('-*)J 

+ r ^(тц J Ä ^ d varг _ т) _ 2|PÄ ř) + 
J„ V(ř - v V(ř - т) 

r Иt) - v(r)l ( т ) d т < 2 C( (f)> ř) + Г fcfifr) , d т 

J„ 2 0 - т ) 3 " ^ U " A W ; ' J J. 2(í - т ) " a -

+ 

+ 

The last integral is finite. 

We obtain together that (1.8) is valid if and only if W$((p(t),1) < oo but this is 
equivalent with V$((p(t), t) < oo in our case (see Lemma 1.1). 

One may prove the second part of the assertion by analogous estimates. 
Now let cp be a Lipschitz function on <a, b> — suppose that 

\<p(ti) - (p(t2)\ S k\h - t2\ 

for any tu t2 e <a, b>. Let t e (a, b>. Then 

r 1 dvar^T) = f J__LdT < fc I" 1 dT = 
J.V0-*) n ' J.V(»-*) " J.V('-^) 

= 2fcV(t - «) = 2l<yf(b - a). 

Thus the condition (1.8) with Q = 1 on <a, b> is fulfilled and, in fact, (1.9) is valid. 
This completes the proof. 

Let us now define the space < ê(<a, fc->) in the same way as in [ l] . Let Q be always 
a nonnegative lower-semicontinuous and bounded function on the interval <a, b}. 
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The space ̂ c(<a, b>) is defined to be the space of all functions f e < (̂<a, b>) for which 
there is a real constant c (dependent on the function f) such that 

| j | <. cQ 

on the interval (a*by and with the property that 

| j ( . o ) - j ( 0 | = o(Q(0) 

for every point t0 e <a, b>. We endow the space ^Q({a, b}) with the norm defined by 

\\f\\Q = M{ceR1; | j | <cQ on <a, b}} 

(fe^Q(<a, b>)). Then the space ^Q(<a, b>) is a Banach space (see [1]). 
In [1] we have shown an assertion concerning the limits of the form 

(1.11) lim Tf(x9t), 
[x,f ]-*[x0 , fo] 

[jc,f]eM 

where M was a set in R2 such that [x0, f0] 6K <z M and either M c {[x, r]; 
t e <a, b>, x > (p(t)} or M c {[x, r]; t € <a, b>, x < (p(t)}. Provided Q(a) = 0 it 
was proved that the limit (1.11) exists and is finite for eachfe ^c(<a, b>) if and only if 

(1.12) lim sup Vf(x, t) < oo . 
[.T,f]-[Xo,f0] 

[jc,r]eM 

The condition (1.12) is fulfilled, for instance, when there is a d > 0 such that 

sup {Vf(x, t); [x, t] €K, l G <a, b> n (<*0 - 5, t0 + <5)} < co . 

Let us now consider the case when the condition Q(a) = 0 is not supposed. 

Proposition 1.1. Let us suppose that 

(1.13) lim *W ~ * a > = 0 . 

.-<.+ 7(r - a) 

Lef P be a continuous function on <a, b> such that /?(a) = 0 and 

\cp(t) - cp(a)\ <p(t)J(t-a) 

for all te(ab} (according to (1.13) such a function ft exists). Put 

Mx = {[x, t]', t e (a, by, q>(t) <x< <p(a) + p(t) J(t - a)} , 

M2 = {[x, f]; * e (a, b>, <p(a) - p(t) 7(j - a) < x < ^r)} . 
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Then there are finite limits 

(1.14) lim Tf(x,t), 

[ ;C,f]6Ml 

(1-15) lim 7Jf(x, r) 
lx,f}^t<p(a),al 

for each function f e ^^{a, b}) if and only if there is a 5 > 0 such that 

(1.16) sup {V%cp(t\ t); t e (a, a + <5)} < oo . 

Proof. One can prove the necessity of the condition (1A6) for the existence of the 
limits (1.14), (1.15) in the same way as Lemma 2.1 in [1] and Theorem 2.1 in [1] 
were proved. 

Assume now that the condition (1.16) is fulfilled and let a function fe <^Q(<a, b}) 
be given. 

In the casef(a) = 0 the existence of limits (1.14), (1.15) may be proved in exactly 
the same way as in [1] (making use, of course, of Theorem VI in [1]). In that case 
even 

lim 7f(x, t) = 0 . 
• lx,t]^l<p(a),a} 

Now it suffices to show that the limits (1.14), (1.15) exist for any constant functionf. 
That may be proved even if we assume nothing about the parabolic variation. It holds 
namely for t e (a, b>, x > cp(t) that 

Tl(x,t) = 2-^-G(
X-<pW) K } • V* \2j(t - a)) 

(where G is the function on *K* defined in [ l ] , i.e. G(— oo) = 0, 

G(t) = j e~*2dx, t > - o o ) . 
J — oo 

Consequently, for [x, t] e Mx it holds (for G is increasing) 

2 _ 2_G(9(a) + mJ(t-°)-<P(a)\ _ 2 _ _1 Gfc # ) ) < 
yfn \ 2 7(r - a) J jn 

<ri(»,o<2--2-G(r^)-^ f l)y 

Since 

i i m Ш _ H m _!_____?) = o 
(-•0+ t^a + 2y/(t — a) 
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we obtain immediately that 

lim Tl(x, ř) -= 1 
[ * ,*] ~*l<f>(a) ,a] 

{x,фMi 

Similarly for the lifhit (1.15). The proof is complete . 

Now let us present an assertion concerning limits of the form 

lim Tf(x, t) or lim Tf(x, t) , 
x-*<p(t)+ x-*<p(t)-

where t is a fixed point of the interval (a, b}. 

Theorem 1.1. Given te(a, b} suppose that 

(1.17) • l i m s u p M - j M < 0 0 . 

Then there are finite limits 

(1.18) lim Tj(x,f), 
x^<p(t) + 

(1.19) lim Tf(x,t) 
x-*<p(r)-

for each function f e%>Q((a, b}) if and only if 

Vi(<p(t), J) < co . 

Proof. If there is, for example, a finite limit (1.18) for each fe %Q((a, b » then 

lim sup V%(x, t) < co . 
x-+<p(t) + 

Since the function V^ is a lower-semicontinuous function on R2, this implies that 

V%q>(t), t) < GO. 

Let V%((p(t\ t) < co. It is sufficient to show that 

(1.20) lim sup Vl(x, t) < oo 
x-*<?(t) + 

and 

(1.21) lim sup V%x, t) < oo . 
x-+<p(t)~ 

For every x e R1 we have 

V%x, t) = s u p I f /(T)exp(-^>,(T))da j e,.(t); /stf Q , \\f\Q ^ \\ . 
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Then it suffices to prove that there are c e R \ 5 > 0 such that 

< c (1.22) j ['/(T) exp (-4M da,,(0 ~ fjW "P (-<,(*)) <**«».&) 
I J a J a 

for each x e (cp(t) - S, cp(t) -f S) and for each function / e #(<a, b)) with | / | <; Q 
on <a, b>. Since q> is a continuous function by assumption it follows from the con
dition (1.17) that there is a constant keR1 such that 

W 0 - < K T ) | ^ M ' - - 0 
for each T e <a, t). Let r > 0 such that 

Putting x = <p(r) + r and considering a function / 6 ^(<a, b>) with | / | ^ Q we have 

(1.23) | f / (T)exp(-a2
> , (T))da ; c > , (T)- | " / ( T ) exp (-a2

( ,M(T)) da^f),,(t) < 
I J a J a 

< | r/(T)exp(-a2,,(T))da,.,(T)- f / ( T ) exp ( - « 2 , , (T ) ) da„(r)>,(T) + 
I J a J a 

+ j /(T)exp(-a2
>,(T))da„(,)>,(T) - / ( T ) exp (-a2

(r)>,(T)) da,,,,,,,^) = 
I J a J a 

I f* I 
= / ( T ) exp ( - O £ , ( T ) ) d(ax,r(T) - a,(r)t,(T)) + 

\ J a j 

I f' I 
+ /(T) (eXP (-«*.*(*)) ~ eXP (-~«l(t)M) da*(f),rM £ 

I J a I 

spWe»P(-<x«)),(^ff-|)^f) + 
+ | | / ( T ) | |exp (-a2

>((T)) - exp (cc2
v(th,(r))\ d var cc^lh,(r) < 

- C° 4 J (, _ T)3/- CXP (~a--'W)dt + J -KT) d var a*«>.<(T) • 

where c0 is a finite constant such that Q g c0 on <a, b>. Since the condition (117) 
is fulfilled it follows from Lemma 1.1 that 

(1.24) Q(т) d var a„(f)>,(т) < co . 
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It holds for each x e (t - (r/2fc)2, t) that 

that is 

for this T. Thus 

\<p(t)-<p(x)\škj(t-x)ž^, 

\cp(t) + r - <p(x)\ £ ^ 

1 / , / чч . Г Г'-<r/")2 dт 
2 + (1.25) - f' exp (-<x2

x it)) dT = - f' 

4 J , - ^ (t - T)3/2 *\ 16(t-x)) 4[V0-T)J f l 

On the right hand side of the estimate (1.25) we have a constant which is independent 
of the value r > 0 (r < 2k^J(t — a)). Hence the condition (V20) is fulfilled. Similarly 
for the condition (1.21). This completes the proof. 

Let us now show some complementary assertions concerning the operators T+, T_ 
which have been established in [1] in connection with the boundary value problem 
of the heat equation. In [1] we have defined a space of all continuous functions on 
<a, b> vanishing at the point a. This space may be considered a space %>Q((a, b>) 
where Q is a function on <a, b> for which Q(a) = 0 and Q(t) = 1 for each t e (a, b>. 
Provided the condition 

(1.26) sup {VK(<p(t), t); t e <a, b>} < 00 

was fulfilled the operators T+ and T_ have been defined on that space by 

(1.27) ? + / ( ' ) = ' l i m Tf(x',t'), 
[*',*']-[>(*),r] 

t'e(a,b>,x'><p(t') 

(1.28) T_f(r) = lim Tf(x\ t') 
[x',r]~»r<p(o,'] 

t'e(a,b>,x'<<p(t') 

(f€ ^0(<a, b>), t e <a, b>). These operators map the space %>0((a, b>) into itself. 
Now let Q be a nonnegative lower-semicontinuous and bounded function on <a, b> 

and suppose that 

(1.29) sup {V%(x, t); [x, t] eK} < 00 . 

Then the limits (1.27), (1.28) exist for each fe #Q(<a, b» and for each t e (a, b>. 
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Proposition 1.2. Suppose that the condition (1.29) is fulfilled and let Q(a) > 0. 
For each fe^Q((a, b}) let us define on the interval (a, b} functions T+f, T_f 
by (1.27), (1.28). Then the functions T+f, T„f may be continuously extended to the 
whole interval <a, b> for each f e^Q((a, b}) if and only if the limit (finite or in
finite) 

(,.30) l imM0_Z_^). 
t-*a + y/(t - a) 

exists. 

Proof. Suppose, for instance, that T+fhas a continuous extension on the interval 
<a, b> for each f e^Q(<a, b>). Since Q(a) > 0 (and Q is lower-semicontinuous) 
there are 5 > 0, fx e ^Q(<a, b>) such that ft(t) = 1 for each t e <a, a 4- S). It is 
easily seen that for each t e (a, a + 5) 

"•"> T^^~fA^0i) 
where G is the function defined above (see [1], proof of Lemma 2.\). The limit 

l i m f + L ( f ) 
t-*a + 

exists by the assumption and since G is an increasing function the limit (1.30) exists 
as well. 

Suppose that the limit (1.30) exists. Iffj denotes the same as in the first part of this 
proof one may write any function fe^Q((a, b}) in the form f =f0 4- kfi9 where 
fo e ^Q((a, b}), f0(a) = 0 (k = f(a)). Operator T is linear (and so the operators 
T+, T_ are) and thus it suffices to show that T+f0, T+ft, T_f0, T_fx may be con
tinuously extended to <a, b>. But 

limT+fo(t) = limT_fo(0 = O 
t-*a+ t-*a~ 

(for lim Tf0(x, t) = 0) and finite limits 
lx,t}~*[(p(a),a} 

lim r+/.(0,lim r_/.(o 
t->a+ f->a + 

exist according to (1.31) and to the assumption of the existence of the limit (1.30). 
This completes the proof. 

Remark. Provided (1.26) holds the operators T+, T_ have been defined on the 
space <^0(<a, b>). Conformably to Proposition 1.2 we may define operators T+, T_ 
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on the space ^ Q « a , b» (provided the condition (1.29) is fulfilled) by (1.27), (1.28) 
for t € (a, by. We define 

T+ f(a) = lim T+ f(t) , f. f(a) = lim f_ f(t). 

Then the operators T+, T_ map ^Q(<a, b>) into ^(<a, b>). 

2. 

In this part we shall show that there is a continuous function (p of bounded variation 
on an interval <a, b> such that 

VK(<p(t)91) = oo 

for almost all t e (a, b> (K = {[(p(t), t]; t e <a, b>}). 

Let a, b 6 R1, a < b. The supremum norm on ^(<a, b>) is denoted by | | . . . jl or 
| | . . . ||^. Let us define a space 0& = ^(<a, 6>). Put 

» = {feC((a, 6 » ; var [f; <a, 6>] < oo} 

and endow the space 0H with the norm | | . . . \\m defining 

| | / | U = | / | « + var [f; <a, b>] , ( / e J ) . 

It is well known that the space 0$ with the norm | | . . . \m is a Banach space. 

For fe 0$ we define on <a, b> a function Wf by 

,0 for t = a 

W"0)=( 
. ,, r d var/(T) for r e (a, b) . 

. V ( ř - T ) I 
For a positive integer fc such that 1/fc< b — a we set 

M* = j f e J?; there is a * <= / a + - , A with Wf(t) = fcl. 

Proposition 2.1. The sefs Mfc are closed in 0$. 

Proof. For e > 0, e < &,— a, fe J* we put 

/0 for r 6 <a, a + e> 
^f(t) < 

d varf(r) for t e (a + e, 6> . Ï >/ ( ' - * ) 
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It is easily verified that W{ is a continuous function on <a, b> (since var [/; <a, b>] < 
< oo) and it holds 

W{S Wf as e \ 0 . 

Hence it immediately follows that Wf is a lower-semicontinuous function on <a, b>. 
Let fne Mk (where k is a fixed number, n = 1, 2, ...) and let ||/„ —/|.# -* 0. 

Then particularly 

lim var [/„ - / ; <a, b>] = 0 
w—> oo 

and thus 

W{n -> W{ as n -* oo 

for any e > 0, e < b — a and this convergence is uniform on the interval <a, b> 
(since the functions l/v(* ~ T) a r e uniformly bounded on the intervals <a, t — e> 
with respect to t e (a + e, b> and Wf "(i>) = 0 for l e <a, £>). According to the 
definition of the set Mk there are points tne <a -F 1/fc, b> such that 

Wfn(t„) ^ k . 

Let us suppose that the sequence {tn} converges to a point t e <a 4- 0/k), &>. We 
assert thatfeMk. Tp this end it suffices to show that Wf(t) = k. 

Suppose that 

k < Wf(t) = k + c. 

Then there are e, d > 0 such that 

W{(t') >k + ^ 

for each r' e <t — <5, r •+ 5> n <a, b> (we assume c < oo; in the case c = oo one 
would proceed by analogy). 

There is n0 such that 

\w{(t') - w{it')\ s ^ 

for each n > n0 and each tr e <a, b>. But then 

k z w(it„) = w{(t„) -£> k + -
4 4 

This is a contradiction which completes the proof. 

Proposition 2.2. There is a function <p e 8b such that 

(2A) VK(<p(t), *) = oo 
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(where K = {[x, *]; t e <a, b>, x = cp(t)}) for almost all t e (a, b>. The function <p 
may be even chosen to be absolutely continuous. 

Proof. Let sf denote the closure in 8$ of the family of all Lipschitz functions on 
<a, b> (it is clear that stf is the set of all absolutely continuous functions on (a, b>). 
srf endowed with the norm restricted from J* is a Banach space. 

Let us prove that the set 

A = {fe s/\ te(a9b}=> Wf(t) = 00} 

is of the second category in s/. From this the assertion will follow. 

Since 

A = st? - U Mk9 
k>l/(b~a) 

it suffices to show that the sets Mkn stf are nowhere dense in stf. Those sets are closed 
and thus it suffices to prove that no set Mkr\ stf contains any interior point (with 
respect to stf). We assume for the simplicity that <a, b> = <0, 1>. Let us define 
functions fn € srf in the following way. 

For a positive integer n we put bn = 1/(2n6) and 

0 for t e (0, b, 

9JL<)-( X n 

S-i-(=2n4) for . 6 / i - fc . , iy 
n2b„ \n nj 

We extend the function <pn periodically with the period 1/w on the whole interval 
<0, 1>. Further, we put 

L(ř)= ľч»-(т)dт ( t є < ű , b » . 

With respect to the fact that the function fn is nondecreasing (for cpn is nonnegative) 
and f„(0) = 0 we have 

2 
I/-Ï» = 2L(1) = 2n-L-b„ 

n b„ n 

Let roe(0, l/n>. Then 

/ l \ /•»/«+•* tpOA 1 <•>/» dT 
W [- + to 1 = — - — ^ ^ dT = - — — l- j J- yc-+-*) n J - y e - - ) 
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-å[-~/G+,--,ï ./--»» " ^ 
(V('o + K) - ф0) 

2 b„ 1 
> = n . 

n2bn ^(bn + f0) + V'o n2 V(2bn) 

In virtue of the fact that the function cpn is \jn — periodic one sees that 

Wfn(t) = n 

for any t e(l/n, 1>. 

Suppose now that for a positive integer k (with 1/k < b — a) the set Mfc n «*/ 
has an interior point (in si). Then there are / 0 e Mfc n si, s > 0 such that 

(2.2) (fest, \\f0-f\\s<8)=>feMk. 

Since the set of all Lipschitz functions on <0, 1> is dense in si (by the definition of 
the set si) one may suppose that the function f0 is a Lipschitz function. Then there is 
a positive integer k0 such that 

Wf0(t) ^ k0 

for each t e <a, b> (see Lemma 1.3). Choose n to be a positive integer such that 

r i II II 2 
n > 2 max (k, k0} , \\fn\\m = - < e . 

n 

Then for each t e <l/k, 1>, 

^(/o + /.)(,) = r * _ d y a r ( / o + y.) (T) = 

Jo v( r - V 

= f' -77^—r d var/„(i) - f — 1 — d var/0(t) = W*\i) - W'°(t) = 

Jo v ( ' - V Jo v(* - T ) 

^ n - k0 > k . 

It follows from this that f0 + f„ 4 Mk which contradicts (2.2) (where we put / = 
= /o -h /„). Thus, in fact, the sets Mkc\ si are nowhere dense in si. 

We conclude that there is a function q> e si such that W^t) = oo for each f e (a, b>. 
But cp has a finite derivative at almost all points t e (a, b) and at every such point t 
it holds 

W*(i) = oo o VK(cp(t), t) = oo 

(where K = {[<l>(0> *] ; t e <a, b>}) according to Lemma 1.3. 

The proof is complete. 
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