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ON L"-SOLUTIONS OF THE DIFFERENTIAL EQUATION 
/ =- <z(t> 

MIROSLAV BARTUŠEK, Brno 

(Received September 3, 1973) 

1.1. Consider a differential equation 

(q) y"=q(t)y, qeC°[a,b), b ^ co , q(t) < 0, te[a,b) 

where Cn[a, b) (n being a non-negative integer) is the set of all continuous functions 
having continuous derivatives up to and including the order n on [a, b). 

Let yx be a non-trivial solution of (q) vanishing at t e [a, b) and y2 a non-trivial 
one the derivative of which vanishes at t. If cp(t), \j/(t), x(t), co(t) is the first zero respec
tively of yu y'2, y[, y2 lying to the right from t, then q>, \j/, x, <o is called the basic 
central dispersion of the 1-st, 2-nd, 3-rd, 4-th kind, respectively (briefly, dispersion 
of the 1-st, 2-nd, 3-rd, 4-th kind). 

Throughout the paper we shall deal with oscillatory (t -» bJ) differential equations 
(i.e., every non-trivial solution has infinitely many zeros on every interval of the form 
[to, b), t0 G [a, b)). 

Let S be the dispersion of the fc-th kind, fc = 1, 2, 3, 4. Then 5 has the following 
properties (see [4] § 13) 

(i) 1) ðєC3[a,b) if 

ðєC1[a,b) if 

k = 1 

k = 2, 3 

2) ð(t) > t on {a,b) 

3) <5'(í) > 0 on [a,b) 

4) lim ð(t) = b . 
t-Ь-

Let n be a positive integer. If ô„ is the n-th iteration of the dispersion Ô of the fc-th 
kind, then 5„ has the same properties (1), see [4] § 13. 
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We shall need also some other properties of dispersions. Let y be a non-trivial 
solution of (q) and let <pn9 tyn be the n-th iteration of the dispersion q>, ij/ of the 1-st 
or 2-nd kind, respectively. Then we have (see [4] § 13): 

(2) <(t) = y2(<Pn(t)W(t) for y(t)*0 

-y2(0//2W0) for K0 = o 

^-^•9f f0-'^° 
= _40_._2^L for / ( 0 _ o . 

<#»(<)) 3>U(0) 

1.2. First we summarize the results that we shall need in the sequel. See [1], [6], 
[2] (Theorems 5, 9, 10). 

Theorem 1. Let (q), q e C°[a, b), q(t) < 0, t e [a, b) be an oscillatory (t -> 6_) 
differential equation and (pn(ij/n) the n-th iteration of its dispersion q> (ifr) of the 
first (second) kind. Let t0 e [a, b). 

a) Every solution of (q) is bounded on [t0, b) if and only if a constant N exists 
such that 

<p'H(x)£.N9 xe[t0,(p(t0)), n = 1,2,3,... 

b) Every solution of(q) belongs to Lp[t0, b), p > 0 if and only if 

oo r<p(t0) 

i Morp/2dt 
n = 0 J t o 

h0Ws. 
c) If q is non-increasing (non-decreasing), then 

- i i ^ ' W - ' l (<5'(0 = 1)> *6[«,6) 
*(*(')) 

h0/ds where d is the dispersion of the k-th kind 0f(q), k = 1, 2. 
d) Le.? 0 > #(t) ^ const > —oo. If there exists a solution y of (q) tending to 

zero for t -> &__, then every solution 0f(q) linearly independent of y is unbounded 
on [a, b). 

e) Let 0 > const. _• #(*) > -co . If there exists a solution y 0f(q) the derivative 
of which tends to zero t -* £_, then the derivative of every solution of (q) linearly 
independent of y is unbounded on [a, b). 

f) Consider the following assertions on [a, b): 
A) The sequence of absolute values of local extremes of (the derivative of) 
an arbitrary solution of (q) is non-increasing. 
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B) The sequence of absolute values of local extremes of the derivative of an 
arbitrary solution (of an arbitrary solution) is non-decreasing. 

C) q^} " \lf'(t) = 1 (cp(t) - t is non-decreasing). 

«(0 
D) (p(t) - t is non-increasing (S^LLII </,'(t) g 1 J. 

V «(0 / 
Then A o C = > D o B fcoWs. 

2. This paragraph deals with the relation of the dispersions of the 1-st and 2-nd 
kind of (q) and the property of every solution (of the derivative of every solution) 
of (q) to belong to Lf[a, b), p > 0. Theorem lb) gives the necessary and sufficient 
condition for every solution to belong to If [a, b), p > 0. The situation for the deriva
tive of an arbitrary solution is described by the following 

Theorem 2. Let (q), q e C°[a, b), q(t) < 0, t e [a, b) be oscillatory on [a, b) 
and let \j/n be the n-th iteration of the dispersion \j/ of the 2-nd kind. Then the deriva
tive of every solution of (q) belongs to lf[a, b), p > 0 if and only if 

oo / X a ) 

(4) X | a (M0) r^ ; (0 l + p / 2 <*<<«> 
w = 0 J a 

holds. 

Proof. Let the condition (4) be satisfied. According to (3) we have for an arbitrary 
solution y 

fb 00 />n+l(«) °° lV(«o 

1/(01" dt - I 1/(01" dt = £ I/OM* *: dt = 
J a n = 0j$n(a) n = 0 J a 

00 f^fl> / \a(*li\\\Pl2 °° f^(fl> 

= z *rp/i WW l^W) d< =M i k w o r 2
 <A;1+'/2 * < <*> 

where 

Af = max 
ře[fl,ý(a)] 

'VtЛl*/-* / 2 ( 0 
<K0 

We can see that y' belongs to If [a, b), p > 0. Let y' belong to Zffa, (b), p > 0 for 
an arbitrary solution >>. Let yl9 y2 be two linearly independent solutions of (q) such 
that y[ * 0 on [a, tx], y'2 * 0 on [*i, ^(fl)], *i = (a + <A(a))/2. Then 

00 r^(fl) °° r C^\M' (th\\p 

X IflGM"2 ^1+p/2 dt - 1 R T T KOI"2 *: dt + 
»=oj0 »=oLJa | y^t) I 

+ r p ' w ' r * ; d ' ] s M ' ( r M | ' d ' + } > ; i ' d ' ) < 00 
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where 

Mt = max ( max 
Vřє[a,ři] 

я(t) 
У'M 

P/2 

max 
tфíMa)! 

Ф) 
У'ł(t) 

P/2 

and we can see that the condition (4) is satisfied. 

Lemma 1. Let (q), q e C°[a9 b)9 q(t) < 0, t e [a9 b) be oscillatory on [a, b) and let y 
be an arbitrary solution. Let (pn9 \j/n, xn> <°n be the n~th iteration of the dispersion 
<P> *A> X> <° °f the \-st9 2-nd, 3-rd, 4-th kind9 respectively. Let t09 f x e [a9 b)9 y(t0) = 0, 
y'('i) - o. 

a) The solution y belongs to If[a9 b), p > 0 ij and only if 

(5) 

holds. 

É \y(Xn + l(to))\P(<Pn + l(to) - <P«(to)) < 00 

b) The derivative of y belongs to IS[a9 b)9 p > 0 if and only if 

(6) 

holds. 

EI/K+i('i))l' (*-+i('i) - Hh)) < °° 
л = 0 

< 0 0 

Proof, a) Let y belong to L"[a, b), p > 0. Then 

i £ \y(Xn + l(t0))\
P («?>„+ l(t0) - <Pn(t0)) = 

- z [[""""(«-•*» ' t r ( , o ) ) l > + 

• •°U*w z»+i('o) - w ) 
C«>»+i(fo) l ^ y / . YVIP -j oo fg>n+i('o) +1 (f-wo)) 'fr ' d t l* s I w' ) i F d f 

Jx„ + i(*o) Z»+1^0J - <Pn+l\t0) J w=0J<p„(.o) 

(because |^j J ' has not smaller values on the interval [(pn(t0)9 X/i+i('o)] o r o n [xn+i(t0)> 
<Pn+i(t0J] than the function the graph of which is the line segment connecting the 
points ((pn(t0)9 \y((pn(t0))\

p) and (xn+i(t0)> \y(xn+i(t0))\
P) o r (xn+i(t0)>\y(xn+i(t0))\

p) 
and ((pn+1(t0)9 \y((pn+i(t0))\

p)9 respectively. Thus we can see that (5) is valid. 
Let (5) be valid. Then 

f*b oo / • ^ n + l ( f o ) 00 /•</>-» + l(*o) 

\y(t)\» dt = M + £ |y(.)|" dt <. M + £ |y(z-+ i(*o))|p dt = 
Jfl n = 0J<M.o) B=0J«>„('o) 

= M + £ IKZn+iOo))!" K+ i(*o) - P-(*o)) < oo , M = f ')y(t)\»dt 
n-0 ja 

and the theorem is poved in this case. 
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b) The statement for / c a n be proved in the same way. We only use \J/, co instead 
of V, X-

Theorem 3. Let (q), q e C°[a, co), q(t) < 0, t e [a, co) be oscillatory on [a, co), 
q monotone. 

a) If there exists a solution y belonging to LP[a, co), p > 0, then lim y(t) = 0. 
f->oo 

b) If every solution belongs to LP[a, co), p > 0, then every solution converges 
to zero for t -> co and lim q(t) = — co. 

f-»oo 

c) If there exists a solution y such that y' belongs to U[a, co), p > 0, then / 
converges to zero for t -> co. 

d) I/ the derivative of every solution belongs to L?[a, co), p > 0, fhen lim q(t) = 0 
and the derivative of every solution tends to zero for t —> co. f~*°° 

Proof, a) Let y be a non-trivial solution of (q) such that y eLP[a, co), p > 0. 
Let f0 G [a, co), >>(f0) = 0. According to Theorem lc) f) the sequence of absolute 
values of local extremes of y is monotone. Hence lim |y(xw(f0))| = M _ 0 where xn 

n-*co 

is the w-th iteration of the dispersion x of the 3-rd kind of (q). If M = 0, then 
lim y(t) = 0. If M 4= 0, then there exists a constant Mx such that |y(x„(f0))| ^ M t > 
f-+oo 

> 0, n = 1, 2, ... and according to Lemma 1 we have 
oo oo 

Z |KXn+l(to))|" (<?>„+l(to) - P»(*o)) ^ AI1 Z(«»-+l('o) - 9n(t0)) = 00 . 
n=0 « = 0 

However, this contradicts our assumption, 

c) This case can be proved in the same way as a), 

b) d) The statement follows from a) c) and Theorem Id) e). 

Remark 1. A result of Bellman [3] § 6.8 concerns problems of this paragraph. 

Let a e C°[t0, oo), b e C°[t0, co), \b(t)\ "<£ const. < co for t e [t0, co). Let p > 1 
be a number and p' = p/(p - 1). If every solution of y" = a(t) y belongs to LP[t0, oo) 
and U[t0, oo), then every solution of y" = (a(t) + b(t)) y has the same property. 

For p = 2 the statement lim q(t) = - co from Theorem 3b) follows from this 
f->oo 

result by indirect proof: Let lim q(t) = - C > - co. Put a(t) = q(t), b(t) = - 1 - q(t). 
f-+oo 

Then every solution of y" — — y belongs to L2[f0, co) but this is not true. 

3. In the last paragraph we shall prove some new results concerning the existence 
of integral jb

a y(t) dt where y is a non-trivial solution of (q). 
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Lemma 2. Let (q), q e C°[a, b) be oscillatory on [a, b) and let y be its solution. 
Let (pn be the n-th iteration of its dispersion cp of the 1-st kind. 

Let t0 e [a, b). Then 
Cb <*> />('o) 

(7) J < 0 < - < - I ( - - H <p'n3l2y(t)dt. 
J to n = 0 J t0 

Proof. According to (2) we have 

fb 00 r<Pn + l(to) 00 f<p(to) 

y(t) dt = I HO dt = E >-M0) <z>;(0 <*t = 
J*o n = 0j<pn(t0) n = 0jt0 

* IV(fo) 

= E(-i)" ^(O^Od t 
n = 0 J t o 

and thus the stament is valid. 

Theorem 4. Let (q), q e C°\a, b), b < oo be a differential equation, q non-
increasing, lim q(t) = — oo. Let y be an arbitrary solution of (q). Then 

<8) IfVOdt 
\J a 

My = const. < oo 

holds. 

Proof. As lim q(t) = — oo, the equation (q) is oscillatory on [a, b). Let y be 

a non trivial solution of (q). Let t0 e [a, b), y(t0) = 0, q(f) < 0, t e [t0, b). As 
<p' :g 1 on [f0, b) (see Theorem lc)) we have 

i r<p(to) i i r<p(to) 
cp'n

3>2y(t)dt\^\\ ^ ( O H O d t 
IJ řo I IJ to 

, П = 2, 3 , 

and according to the alternating series test the infinite series in (7) converges if and 
only if 

r<p(to) 

(9) lim <p'V2(t)y(t)dt = 0 

"-*00 J f o 

holds. Hence JJ y(t) dt converges iff the condition (9) is valid. 

Let c < 0 be a number. As lim q(t) = — oo, there exists a number fls ^ e [a, b) 

such that #(f) < c,te\tu b). Then the Sturm Comparison Theorem for the equations 
(q) and y" = c .y implies 0 < q>(t) - t = njyj-c. Thus lim (^(f) - f) =-= 0. Ac-

cording to Theorem la) c) an arbitrary solution of (q) is bounded on [a, b) and 
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<p'n(x) = 1, x e [a, b). There exists a constant M > 0 such that \y(t)\ = M, t e [a, b) 
holds and we have 

i f<p(to) p<p(to) 

0 = lim <^;3/2(0 y(0 df = lim M cp'n(t) dt = 
n-oo|J fo n-oo J , 0 

-=limM(<pn+1(r0)- <p„(f0)) = 0 
H-+00 

(because lim (<p(t) — f) = 0, lim q>n = 6). 

Thus (9) is valid and the theorem is proved. 

Remark 2. Theorem 4 is a generalization of a result in [5] XIV, § 3, where the 
assumptions are: q e C°[a, b)9 q non-increasing, (q) oscillatory on [a, b). However, 
(8) was proved only for solutions tending to zero for t -* &_. Theorem 4 is a generali
zation of this result because if lim q(t) = c, 0 > c > — oo, then no non-trivial 

t-*b 

solution of (q) tends to zero for t -» &_. This follows from the following argument: 
Suppose that lim yt(t) = 0. According to Theorem Id) we have that the function y2 

t-+b 

is unbounded on [a, b) where yl9 y2 are linearly independent solutions of (q). 
Theorem lc) gives q(il/(t)) i/>'(f)/q(f) = 1, t e [a, b) where \J/ is the dispersion of the 
2-nd kind of (q). On the other hand it follows from Theorem If) that the sequence of 
absolute values of local extremes of y2 is non-increasing and thus y2 is bounded on 
[a, b) which is a contradiction. 

References 

[1] Bartusek M.: Connection between Asymptotic Properties and Zeros of Solutions of y" = 
= q(t)y. Arch. Math, i , VIII, 1972, 113-124. 

[2] Bartusek M.: On Asymptotic Properties and Distribution of Zeros of Solutions of y" = 
= q{t)y. Acta F.R.N. Univ. Comenian. To appear. 

[3] Belman R.: Teopna VCTOHHHBOCTH pemeHHH AH^^P^HiniajibHbrx ypaBHeHHH, MocKBa 1954. 
[4] Bor&vka O.: Lineare Differentialtransformationen 2. Ordnung. VEB Berlin 1967. 
[5] Hartman Ph.: Ordinary Differential Equations. New York—London—Sydney, 1964. 
[6] Neuman F.: Distribution of Zeros of Solutions of yn = q{t)y in Relation to Their Behaviour 

in Large. Acta Math. Acad. Scien. Hungaricae. 8 (1973) 177—185. 

Author's address: 662 95 Brno, Jana£kovo nam. 2a (Prirodovedecka fakulta UJEP). 

115 


		webmaster@dml.cz
	2012-05-12T06:46:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




