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ON SUMMABILITY IN CONVERGENCE I-GROUPS
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Summary. In connection with two questions on convergence groups proposed by J. Novak
there are constructed convergence /-groups which have some rather pathological properties
concerning the summability of sequences.
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Convergence groups were studied by J. Novdk [13], [14], [15]; cf. also R. Fri¢
[2].[33], R. Fri¢and V. Koutnik [4], C. K1i§ [10], V. Koutnik [12], C. Schwartz [17]
and F. Zanolin [18].

Let o/ be the class of all convergence groups G containing a sequence (x,) which
converges to 0 but each subsequence ( y,,) of which is not summable. (A sequence (z,,)

@
is summable if the series ) z, converges.)
n=1

Next, let # be the class of all convergence groups G containing a sequence (x,,)
such that each subsequence (y,) of (x,) contains a subsequence which is summable
and another subsequence which is not summable.

Problems 14 and 16 proposed by J. Novdk [15] consist inasking whether the class &/
(or the class 4, respectively) is nonempty.

" Problem 14 was solved affirmatively by F. Zanolin [18] and by R. Fri¢ and V.
Koutnik [4]. C. Schwartz [17] found a normed linear space belonging to the class 7.

C. Kli§ [10] solved Problem 15 affirmatively by appliyng orthonormal vector
measures with values in the Hilbert space [,.

The notion of the convergence I-group was introduced by M. Harminc [6];
cf. also Harminc [7], [8], and the author [9]. While in [6] a convergence « on an
I-group G is a subset of G¥ x G consisting of pairs ((x,), x) where x, converges
to x, here we understand by a convergence « a subset of G¥ consisting of sequences
(x,) converging to 0.

Each convergence I-group is a convergence group. A natural question arises
whether there exists a convergence I-group belonging to the class «7; a similar question
can be asked for the class #.

For an I-group G we denote by Conv G the set of all convergences « on G such
that (G, «) turns out to be a convergence I-group. If H is an I-subgroup of G and
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ae Conv G, then o(H) = an HY is a convergence on H induced by «; in such
a case (H;«(H)) is a convergence I-group as well. The I-group G is said to be
of infinite breadth if there exists an infinite disjoint subset of G (a subset M of G
is called disjoint if x; A x, = 0 whenever x; and x, are distinct elements of M,
and x > 0 for each x € M). For example, each direct product of an infinite number
of nonzero I-groups is of infinite breadth.

In the present note it will be shown that convergence l-groups belonging to the
class & occur rather frequently. Also, there exists a convergence I-group which
belongs to the class #. Namely, the following results will be established:

(A) Let G be an abelian lattice ordered group of infinite breadth. There exist
t,€ConvG (m=1,2,...) and convex l-subgroups G, (m =1,2,...) of G such
that

(1) o1y F Tmezy aNd Gpyy N Gpzy = {0} whenever m(1) and m(2) are distinct
positive integers;

(ii) for each positive integer m, (G,, o,(G,)) belongs to the class .

(B) There exists a linearly ordered group G such that

(i) (G, 0p) € B, where a, is the set of all sequences (x,) in G which o-converge
to 0 in G;

(i) G is a subgroup of the lexicographic product of linearly ordered groups G,
(n € N), where each G, is isomorphic to Z.

(Here, Z denotes the additive group of all integers with the natural linear order.)

1. PRELIMINARIES

For the terminology and notation concerning linearly ordered groups and lattice
ordered groups (= I-groups) cf. L. Fuchs [5] and V. M. Kopytov [11]. The group
operation will be denoted additively. Throughout the paper we assume that all
I-groups under consideration are abelian.

We recall some relevant notions on convergence [-groups.

Let N be the set of all positive integers and let G be an I-group. The direct product
[Tnew Gn» Where G, = G for each n e N, will be denoted by G". The elements of G"
are denoted by (g,,),en, or simply (g,). If there exists g € G such that g, = g for each
ne N, then we put (g,) = const g.

(g94) is said to be a sequence in G. The notion of a subsequence has the usual
meaning.

For each l-group G weset G* = {ge G: g = 0}. Let « be a convex subsemigroup
of (G)* such that the following conditions are satisfied:

(1) If (94) € a, then each subsequence of (g,) belongs to a.
(I1) Let (9,) € (G¥)*. If each subsequence of (g,) has a subsequence belonging
to a, then (g,) belongs to a.
(IIT) Let g € G. Then const g belongs to o if and only if g = 0.
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Under these assumptions o is said to be a convergence in G. The system of all
convergences in G will be denoted by Conv G.

For (9,) € G¥, x € Conv G and g € G we put g, —, g if and only if (|g, — g|) e a. -
If (x,), (va) € GV, x, >, x and y, >, y, then x, + y, >, x + y and —x, >, —x.

If « € Conv G, then the pair (G, «) will be called a convergence I-group. It is clear
that each convergence I-group is a convergence group.

Let H be an I-subgroup of G and let « € Conv G. Put a(H) = « n H". Then o(H)

belongs to Conv H; it is said to be induced by a. For a sequence (h,) in H and for
h € H we often write x, —, x instead of x, =, x.
Let A be a nonempty subset of (G¥)*. We denote by 54 the system of all sub-
sequences of sequences belonging to 4. The symbol [A] will denote the convex
closure of the set A U {const 0} in G". Let (4) be the subsemigroup of G" generated
by the set A. Next, A* will denote the set of all sequences (x,) in G such that each
subsequence (y,) of (x,) has a subsequence belonging to A.

1.1. Proposition. (Cf. [8], Theorem 1.18 or [6], Theorem 2.) Let § + 4 < (G¥)*.
Then the following conditions are equivalent:

(a) If g € G, const g € [{3A4)], then g = 0.

(b) [(64>]* € Conv G.

For X = G we put

X* ={geG:|g| A |x| =0 for each xe X} .

If a nonempty subset A of (GY)* satisfies the condition (a) from 1.1, then 4 will
be said to be regular.

The following two assertions are easy consequences of 1.1 (cf. also [ 8] for related
results):

1.2. Lemma. Let (x,) € (GY)*. Assume that x, A X,, = 0 whenever n and m are
distinct elements of N. Then the one-element set (x,,) is regular.

1.3. Lemma. Let A be regular. Let (x,) be a sequence in G such that all x, belong
to A* and (x,) € [(8A)]*. Then there is me N such that x, = 0 for each n > m.

2. THE CLASS &

Proof of Theorem (A). Let G be an I-group of infinite breadth. Hence there exists
an infinite disjoint subset X in G. Thus there is a system S = {X,},.y such that
each X, is a countably infinite subset of X and X, n X,, = @ whenever n and m
are distinct elements of N.

Let m e N. Arrange the elements of X,, into a one-to-one sequence (xp)ney in G.
In view of 1.2, the set (xy)uen is regular. Denote a,, = [{0{(x]),n}>]*. According
to 1.1, a,, belongs to Conv G.
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Let m(1) and m(2) be distinct elements of N. Then we have

(xz(l))nEN € am(l) B

but in view of 1.3, (x',:'(z’),,e,v does not belong to a,,,. Hence o,y F o,2).

We denote by G,, the convex I-subgroup of G generated by the set {x}'},ey. Since
(X )nen € @y we have xi —, 0. Let {z7"},.y be a subsequence of (X7),.y. Put yr =
=z7 + 27 + ... + z; for each neN. Assume that there is y™ e G, such that
Ve

We have y; > 0 for each n e N. Hence

Yn=yn V0=, y" v O,

thus y™ = 0. Let k € N. Consider the sequence (zf)kéneN. For each ne N withn = k
we have yy = yi v zy, thus

m m m .
yn _')amy Vv Zk ’

therefore
(1) zZp < y™ foreach keN.

Since y™ € G,,, there is t € N such that

(2 0= y" S e xT + x5 + ... + X7,

where ¢y, ¢,, ..., ¢, are positive integers. Choose ke N, k > t. Then z;' A x] =

=0,...,zf A x}' =0, which in view of (2) implies zj' A y™ = 0. Taking (1) into
@

account, we arrive at a contradiction. We have proved thatz z, does not exist in the

n=1
convergence I-group (G,, «,(G,)). According to the construction of G, we have
Gty N Gezy = {0} whenever m(1) and m(2) are distinct elements of N. Hence we
have proved Theorem (A).

3. THE CLASS #

In this section, Theorem (B) will be established.
Let Q be the additive group of all rationals (with the natural linear order). For
each me N let G,, = Q. Consider the lexicographic product.

H = 1“mel‘l Gm

(cf., e.g., Fuchs [5]). Then H is a linearly ordered group. The elements of H will
be denoted as h = (h™),en-

For re Q and h e H we put rh = (rh™),.y. Then H turns out to be a linear space
over Q.

For each ne N let e, = (€])en be the element of H such that € = 1 for m = n
and e, = 0 otherwise.
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Let H, be a subgroup of H (with the induced linear order). Assume that e, e H,
for each n e N. Let r, % 0 be a rational number for each n € N. Denote y, = r;e; +
+ rye; + ... + r,e,. There exists y € H with y™ = r,, for each m € N. Further, let o, -
be the set of all sequences (x,) in H such that (x,) o-converges to 0 in H,. ’

From the fact that all elements e, (n € N) belong to H; we obtain

3.1. Lemma. Assume that r,e,€ H, for each ne N.If ye H,, then y = \/;~1 Yn-
If y does not belong to H,, then \/;~, y, does not exist in H,.

Since y; £ y, £ y3 £ ..., Lemma 3.1 yields

3.2. Lemma. Assume that r.e, € G for each neN. If ye H,, then y, >,y in G

o]

(hence Z r.e, is summable in H, with respect to the o- conbergence) If y does not
n=

belong to H,, then (y,) is not o-convergent in Hy (hence Z rqe, fails to be summable
in Hy with respect to the o-convergence). n=1

We define a mapping m: 2¥ — H as follows: for each @ & 4 < 2¥ we put
m(A) = h, where k™ = 1if m € 4, and h™ = 0 otherwise; next we set m(9) = 0.

By applying the results established in [10], Part II we obtain the following as-
sertion as a particular case:

3.3. Lemma. There exists a linear subspace E of the linear space H with the
property that for each infinite subset A of N there are elements ue E, ve H\E
with

m™(u),m™(v) = 4.

3.4. Lemma. Let E be as in 3.3 and let (e,) be as above. Let E be viewed as a con-
vergence group with respect to the o-convergence. Then

(i) e, € E for each neN;

(ii) each subsequence of (e,) contains a subsequence which is summable in E,
and another subsequence which is not summable in E.

Proof. (i) follows from the proof of Theorem in [10] since, in the notation of [10],
e, € Ey < E for each n e N. The assertion (ii) is a consequence of 3.2 and 3.3; in 3.2

weputr, = 1,neN,and hence y, =) e;.
i=1

Let G = {he E: h™ is an integer for each m € N}. Then G is a subgroup of E;
it is linearly ordered by the induced linear order. It is obvious that the assertion of 3.4
remains valid if E is replaced by G. Moreover, G is a subgroup of I',,cp G.,, Where
G,, = Z for each m € N. Thus Theorem (B) is proved.
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Sahrn

O SUMOVATELNOSTI V KONVERGENCNYCH /~-GRUPACH

JAN JAKUBIK

V stvislosti s dvoma otdzkami o konvergenénych grupach poloZzenymi J. Novdkom zostrojuja
sa v tomto ¢lanku konvegenéné zvdzovo usporiadené grupy s urditymi ,,patologickymi‘¢ vlast-
nostami tykajicimi sa sumovatelnosti radov.
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