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CGasopis pro pdstovani matematiky a fysiky, rot. 72 (1947)

On regular and combinatorial imbedding.
By _
Eduard Cech (Praha) and Joset Novék (Brno).
(Received February 11th, 1947.)

" In his paper Lattices and. topological spaces (Annals of Math.
39 (1938), 112—127) H. Wallman constructed, for an arbitrary
topological space*) @, a definite bicompact space «¢ containing
Q as a dense subset. In §3 of the present paper, we prove that
@ may be characterised by the property that @ is both regularly
and combinatorially imbedded in it. Regular imbedding is defined
and analyzed in § 1, combinatorial imbedding, in-§ 2. In § 4, we
consider the questlon whether two points may be separated by
open subsets of w@.

1. Definition. A subspace @ of a space P is said to be re-
gulary imbedded in P if the family (F) of the closures in P of all
sets F closed in @ constitutes a closed basis of P, i. e. if every set .
closed in P is the intersection of some subfa.mlly of the famﬂy

(F). As P itself is closed in P, we have:

(1.1) If Q is regularly imbedded in P, then Q is dense in P. -

- (L.2) If Q is regularly imbedded in P and if @ C Py C P, then
Q is reqularly imbedded in P,

Definition. Let @ C P The point z e P is said to ‘be a Q-
regular point of P if, for any set @ C P —x closed in P, there

exists a set F' closed in @ such that d5 CFCP—u, F mdlca,tmg
closure in P. Clearly:
- (L3) QC P is regularly imbedded in P if, and only if, (z) Q
18 dense in P, (i1) any point x € P i3 Q-regular in P,
(1.4) IfzePisa regular point of P, then x is Q -regular for any
-8et @ dense in P. '
Proof. Let ® C P — x be closed in P. Then P — @ is a neigh-
borhood of z in P. As z is a regular point of P, there exists an open

*) We consxder only spaces in which the closure of any point set is
.closed and, for convenience, we make also the easily avoidable assumptlon
(not made by Wallman) that each finite point set is closed.




neighborhood U of x in P such that UC P — ®@. The set F =
=Q— UlsclosedanandFCP—UCP—x AsQ =QU + F,
we have P = QCU—]—-FC(P @)—{—F whence @ C F.

Definition. A space P is called nearly regular if any @ dense
in P is regularly imbedded in P. From (1.3) and (1.4) we have:

(1.8) Any regular space is nearly reqular. '

Definition. A space P is called hereditarily nearly regular
(h. n. r.) if every subspace of P is nearly regular. Since regularlty
is a hereditary property, (1. 5) gives:

(1.6) Any regular space is h. n. r.

From (1.2) we see at once:

" (1.7) If every closed subspace of P is nearly reqular, then P is
. M. T

Example 1. The space P; consists of the points z,; (n =
=1,2,3,...,t=1,2,3,...), as(n=1,2,3,...), and 2. Each
point @,; is ‘an isolated point. The point x, possesses the funda-
mental nelghborhoods Un(k =1, 2,3, ...) consisting of x, and
Zni (¢ = k). The point z possesses the fundamental neighborhoods
Vi (k=1,2,3...) consisting of z and @a; (n 2 k, © = k). Clearly
P,isa countable Hausdorff space satisfying the second countability
axiom; each point except z is regular. The subspace §, consisting
of z and all z,:’s is dense in P,, but @, is not regularly imbedded
in P,, since the set @ consisting of all x,’s is closed in P,, but @ is
not of the form I7F for any family (F) of sets closed in @,. Hence
P, is not nearly regular.

Example 2. The space P, consists of the points Zni, Yn
n=123,...,1=1,2,3,...), za(n =1,2,3,...), and 2. The
points x,; and y,; are isolated. Each point z, possesses the funda-
mental nelghborhoods U (k= 1, 2, 3,...) consisting of the points
Xni (1> k), yni 0 > F), and 2, The pomt 2 possesses the funda-
mental | nelghborhoods Vi (k=1,2,3,...) consisting of the points
Zni (= k, 1 2> k)- and z. Agam P2 is a countable Hausdorff
space satisfying the second countability axiom and z is the only
irregular point of P,. We shall prove that P, is nearly regular.
Let @ be any dense subset of P,; clearly ¥ C @, Y being the set

- of all yni's. By (1.3) and (1.4) we have only to show that the point
z E @-regular. Let @ C P, — x be closed in P,. Then F = @@ + Y,
is closed in @, Y, being the closure of Y in Q and clearly @ C F C
‘CP,—-=. Hence z is @-regular. Therefore P, is nearly regular, but
not hereditarily, which follows from example 1.

Example 3. Let M be any uncountable set. The space P,
consists of the points z, (n = 1, 2,3,...,ue M), 2, (n =1, 2,3,...),

~ and 2. The points z,, are isolated. Each point z, possesses the

fundamental neighborhoods U,x consxstmg of the pomts Ty
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(v e M — K) and x,, where K runs over the family of all finite
subsets of M. The point z possesses the fundamental neighborhoods
Ve— Sy (k=1,2,3,...), Vi consisting of the points z,, (n > k,
t € M) and Sj running over the family of all countable subsets of
Vi. Clearly P, is a Hausdorff space and z is the only irregular point
of P,. We shall show that the space P, is h. n. r. Let @ denote
any subspace of P, such that z¢ . By (1.3) and (1.4) we have
only to show that, in the space @, the point z is @-regular. Let

@ C @ —=z be closed in @, hence in P,;. Let X, (n =1,2,3,...)
denote the set of the points xn, (1 € M). For each n such that the
set X, is infinite, choose an infinite countable subset 7', of X, Q;

let T, = 0 if X,,@ is finite. Then F = Q® + (i Tn)o, the subscript
= i

0 indicating closure in @, is closed in @ and it is easy to see that
& C F C P;— z, which proves z to be Q-regular in Q.

2. Definition. Let n = 2, 3,4,.... A subspace @ of a space
P is said to be n-combinatorially imbedded in P if, for any choice

F,F,...,Fy,of relatively closed subsets of @ such that 1—[ F;=0
n o__ ‘ 1
we have [F;= 0. Clearly m-combinatorial imbedding implies

. 1

n-combinatorial imbedding for 2 < n < m. The imbedding is said
to be combinatorial if it is nm-combinatorial for each n = 2, 3, 4,. ..

Definition. A subspace @ of a space P is said to be combi-
natorially imbedded in P in the strong sense if, for any choice F,, F,
of relatively closed subsets of ¢ we have F.F, = F,F,. By an easy
induction, this implies IIF; = IIF; for any finite number of rela-
tively closed F; C €, so that combinatorial imbedding in the @trong
sense implies ordinary combinatorial imbedding.

(2.1) Let @ be 2-combinatorially tmbedded in a regular space P.
Then Q s combinatorially vmbedded tn P in the strong sense.

Proof. Suppose, on the contrary, that there exist two relatively

closed sets F; C @ and F, C @ such that F,F, + F—IE. Then there

exists a point ¥ ¢ F,F, — F.F,. By regularity, there exists an open
neighborhood U of « in-P such that UF,F, = 0, whence UF,F, = 0.
Clearly x ¢ ®,®, where the sets @, = F,U and @, = F,U are closed
in @. But this is impossible, since @,P, = 0 and @ is 2-combinato-
rially imbedded in P. .

For n=10,1,2, ... let w, denote the least ordinal number
of power X, and Z,, the set of all ordinal numbers & < wq.

Example 4. Let P, = Z, + w,. Each &e¢Z, possesses the
fundamental system of neighborhoods Ug (7 € Z1, 1 < &), where
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- Uy, consists of all ordinals { such that n < { < & The point w;
possesses the fundamental system of neighborhoods V. (£ € Z,),
where V, consists of w, together with all isolated ordinals 5 € Z,,
n > &. Clearly P, is a Hausdorff space and w, is the only irregular
point of P,. Then Z, is combinatorially imbedded in P,. Suppose,
on the contrary, that there exist relatively closed sets F; C Z,

.. (1 £1 < n) such that ﬁF; =0+ ﬁﬁ—', Then it is clear that no

1 1
F; is countable. But then there exist points &, e Z, (k= 0, 1, 2,...)
suchthat £, < &, <& < ... and

Emel,, 5in¢1€F2, vy Einan— € Fr j =0,1,2,...)
which is 1mposs1ble since it implies lim &; eHF Hence Z, is

combinatorially imbedded in P, but not in the strong sense. . For
let F, consist of the points

& &+ 1, §+3 &+ 5,.
and F,, of the points

§EE+ 2,84+ 4,5+6,...,

£ € Z, running over all non isolated ordinals. The sets F';, C Z, and

F,C Z, are relatively closed and wehave w, e F,F, — F,F,.
Lemma.*) Let m, 1,, %5, ..., im be 1ntegers such that m>1,
056, <t < ... <1y Let S = 8(iy, 3, - . ., im) be the ca.rtesmn

product
: (Zi, + wi) X (Zi, + wi)) X ... X (Zi, + wi,)

in,its ysual topology. Let A be a subset of Z; X% Z,, X oo X Zs,
such that (w;, i, ..., i,)ed. Choose an integer r such that
1< r<mand an ordinal x ¢ Z;. Then A contains a point (&,
&3 < .., Em)such that & = wy for1 < s Sm, s F rand o < & < oy,
Proof. The lemma being trivial for m = 1, we may assume
its wvalitidy for m — 1. Suppose first r <m. Smce (wi,y, Wiy -« -y
wi,) e A, for a given (a4, xg, ..., %m) € Z;, X Z;, X ... X Z;, the
set 4 contains points (&3, &, ..., &) such that oy < & < wil, e
«ves 0m < &y < w;,. The cardinal number of the set of all such
points (£, &,, .. Em) béing equal to ¥,,, whence greater than the
cardinal number of Zi, X ... X Zi,_,, the cardinal number of the
set of our points will remain equal to ¥,, even if we restrict the
*) This lemma is a fairly obvious generalization of a result of A.

Tychonoff - (Math. Annalen 102, 1930, see Behaupt\mg 1., on p. 563 and
Behauptung III -on p. 555)
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first m — 1 coordinates to fixed, but conveniently chosen, values.
Therefore, 4 contains points (£, 52, ..., &m) such that o, < & < w;,

for 1 < s < m—1 and &, = w;,. Now if B denotes the set of all
(Ers «ev bmor) € Zi, X ... X Zy,__ such that (&, .. ., fn—, wi,) € 4

we have clearly (w;, ..., wi, ) € B in the space S(iy, ..., im—y).

The lemma being true for m — 1, B contains a point (&, ...,
<.+ &m—y) such that & = w,, for 1 <3<m—1 s*rand o <

< & < wi; but then (&, ..., &ny, wi,) € A Secondly, let r = m.
Choose (og, «- ., m)€Zs;, X ... X Zim. By transfinite induction,
we may construct a transfinite sequence (p;) of type w;, of points
Pr= (a1, - .-, Eam) € A such that &, < &, ..., Eim < &um for A <
< pu < wy and &, > x,, ..., &, > «, for all A’s. The point p =
= (&, ..., &n) = lim p; belongs to A and we have &, = w;, and
o < & < i, for 2 < s < m. ‘Hence if B denotes the set of all
(b2 - - s 8m) €Zy, X ... X Zy, such that (w;, &, ..., &n) ed we
have (w;,, ..., w;,) € B in the space S(iy, ..., %,). The lemma being
true for m — 1, B contains a point (&,, ..., &m) such that & = ws,
for2<s<m—1and &« < én < wi,; but then (wi, &, ..., &m)
e 4.

Example 5.*) Let n = 3, 4, 5, . The space Py consists of
all n-tuples (&, &, - .., &) such tha.t E,eZ + w; for 1<iln
and & = w; for at least one i. We put z = (wy, w,, ..., w,,) The
point & = (&, &,, . . ., &) € Py — z possesses the fundamental system
of neighborhoods Vg(nl, Nas ++ s M) i€ Ziy s < & for 1 < v < )
consmtmg of all n-tuples (;, g, - - ., Cn) € Py such that 9, < ¢ < &
. for 1 < ¢ < n. The point z possesses the fundamental system ' of
neighborhoods V(&,, &, ..., &n) (& € Z; for 1 < ¢ < n) consisting
of z together with all points (7, 7, ..., 7n) € P; such that n; > &
for 1 < 7 < » and 7 = w; for one and only one value of :. Clearly
Py is a Hausdorff space and z is the only irregular point of Py. For
1 < t < m, let @; consist of all points (&, &, ..., &) € Py— 2z such
that &, = w, Then the sets @, C Py — 2 are relatively closed and

we have H ®; = 0, 1_[ d; = z, whence Py — zi8 not n-combina-

torially lmbedded in P However, we shall show that this im-
bedding is (n — 1)- combmatonal First, let us put S; = 8(jy, ...,

. +s Jn—) (see the lemma above) the sequence j,, ..., jn—y bemg
obtained from the sequence 1, 2, , n by cancellmg the term .
If fi (1 <4< n) denotes the cancel]ing of the i-th coordinate,

*) This example (for n = 3) is due to M. Katdtov.
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then fy(®; + z) = S; is 1 — 1, though not topological; however,
the partial .transformation fi(®;) = 8;— 2z is a homeomorphism.
Now let the sets. F, C Py —2(1 < r < n — 1) be relatively closed

n—1

and let z € H F,. We have to show that H F, £ 0. Since Py —z =
= Z ®@;, for each r(1 < r < n— 1) there must exist an ¢,(1 < 4, g n)
1 s

such that z e F,—tDlr Now this relation valid in the space P; evi-
dently implies the analogous relation z e f,-r(F,Q;T’) in the space

8;, where @'; = @, — > ®@;. Since r assumes only n — 1 values,
iF,

there exists an integer s such that 1 < s < » and s + 7,, for 1 <
< r £ n— 1. Using the lemma and recalling that fiDi) = 8i, —2

is a homeomorphlsm we see that, for any given ordinal x € Z, and
forany r (1 £ r < n— 1), there exists apoint p= (&, &, ..., &n)e
em, such that & =w; for 1< i< m, 145 and o < § < w,.
Of course, we have p ¢ F,®;_ since the set F,®; C P; —z is relati-
" vely closed. By induction, we may now construct an infinite

sequence of points pr = (xy, kg, - - -, Eka) such that & = w; for
151 m, t+s and all &'s, &, <&y < &< ... <w, and
pre F,®; for 1< r<n—1, k=rmod (n—1). There exists

n—1 n—1

the limit point p = lim p; and clearly Pe r[F,, whence n F, &+ 0.

3. Let @ be any given topological space We recall brleﬂy the
definition of Wallman’s bicompact space w@ D @. Points of 0@ — @
will be called ideal points and points of @, real points. We have to
define first the ideal points and secondly the topology of w@. An
ideal point « is, by definition, a collection of subsets of @ (called
the coordinates of «) having the following properties:

(¢) the elements of the collectlon are non vacuous closed
subsets of Q,

(1) the intersection of any finite number of elements of the
collection belongs itself to the collection,

. (#17) any closed subset of @ intersecting each element of the
collection belongs itself to the collection,

~ (iv) the intersection of the whole collection is vacuous.

For any open subset G of @, let G* “consist of all real pomts
belonging to G and of all ideal points « such that there exists some
coordinate A C @ of «. If G runs over the family of all open
subsets of @ then G* runs over an open basis of w@, thus
"defininfg the topology of w@. For any closed subset F of @, the
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closure F of F in »@Q consists of all real points beior;ging to F and
of all ideal points « such that F is a coordinate of .

(3.1) The imbedding of an arbitrary topological space @ in
Wallman s bicompact space @ is both regular and combmatorml n
the strong semse:

Proof. We begin by proving that the imbedding is regular.
@ is clearly dense in w@. Let x be any point (real or ideal) of w@
and let @ be a closed subset of w@ not containing x. By (1.3) it

suffices to indicate a closed subset F of  such that @ C FCoQ—z.

_Since « belongs to the open subset w@ — @ of w@, there exists an
open subset G of @ such that ¢ G* C wQ — ®. Then F = Q@ — G
is a closed subset of Q. Since z ¢ G*, we cannot ha_\_re z ¢ F. This
is evident if z is real; if z is ideal, then x € G*, x ¢ F' would mean
that x has a coordinate A C G as well as the coordinate_F, which
is impossible as GF = 0. It remains to show that x ¢ F for any
x € ®D. For a real « this is a consequence of the evident relation
QP C Q—@QG=F;if « is ideal, the inclusion G* C w@ — D shows
that, since « € @, any coordinate of « meets @ — G = F so that
F itself is a coordinate of x whence x ¢ F'.

It remains to show that the imbedding is combinatorial in
the strong sense. Let F, and F, be two closed subsets of @ and let

» e F,F,; we have to prove that x e F,F,. This being evident for

a real «, let x be ideal. Then « € F;, x ¢ F, means that both F, and
F, are coordinates of « so that F'\F, is also a coordinate of o Whence

x € F.F,. <

(3.2) Let the space @ be both regularly and 2- combmatormlly
tmbedded in the bicompact space. P. Then there exists a homeomor-
phzsm f(w@) C P such that f(x) = z for each x € Q. If the tmbedding
s combinatorial, we have f(w@) = P.¥)

Proof. For any X C @, let X denote the closure of X in the

space w@ and X, the closure in the space P. For x € Q, let f(x) = .
We.next define f(«) for an ideal point x of w@Q. Now « is, by defi-
nition, a collection of closed subsets of @ hayving properties (¢) to
(iv). Let «® denote the collection of all sets 4, 4 running over «.
By propertles (¢) and (i2), the intersection of a finite subcollection
of «” is never vacuous; the space P bemg bicompact, the, inter- -
section g(x) of the whole collection «° is not vacuous either; by
property (iv), @.p(x) = 0. Hence g(x) contains at least one pomt
feP—Q. We have B¢ A for any A4 e«. Conversely, let F be a

closed subset of @ such that 8 ¢ F. Then A'F contains § for any

*) We do not know whether f(w@) = P whenever the imbedding is
'2-combinatorial, ~
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4 € x. The imbedding of @ in P being 2-combinatorial, it follows
. that AF # 0 for each 4 € «, whence F' € « by property (i¢2). Hence
the collection « consists exactly of those closed subsets 4 of @
for which the relation g ¢ 4 holds true. Now by regularity of the
imbedding of @ in P, the one point closed subset () of P is the
intersection of all such 4’s. It follows that the set g(x) consists of
just the one point 8 and we may put f(«x) = 8. The transformation
f(w@) C P so defined is clearly 1 — 1 and f(z) = « for each z € Q.
Let us put f(w@) = P, so that @ C P, C P. )

For any closed subset F of @ we must have f(F)=="P,.F.
Suppose first that g e P,.F; we have to prove that fef(F). If’
B e@, then B e F C f(F); hence suppose f e P,— Q. By definition
of P,, there exists an ideal point & of w@ such that g = f(x); «
consists of all closed subsets A of @ such that 8 e 4; since ¢ F,
we have F e «, whence « € F' and 8 = f(x) C f(F). Conversely, let
B € {(F) so that e Py; we have to prove that § ¢ . There exists
an « € F such that g = f(«). If « is real, we have 8 = « ¢ F C f(F).
If « is ideal, then x ¢ F means F ¢ x, whence f = f(x) ¢ 7.

Let C, be a closed subset of P,. There exists a closed C of P
such that Cy = Py.C. The imbedding of @ in P being regular,
there exists a family ¢ of closed subsets F of @ such that C = ITF,
whence €y = ITP, . F, F running over ¢. But P,. F = f(F) and the
transformation f being 1—1, we have C, = IIf(F) = f(IIF).
Hence each closed subset C, of P, has the form C, = f(®), @ being
closed in w@. Conversely, let ® be closed in w@. By (3.1), the
imbedding of @ in wQ is regular. Hence there exists a family ¢
of closed subsets F of @ such that @ = IIF. The transformation
f being 1 — 1, we have Cy = f(®) = II}(F) = IIP,.F = P,.IIF.
The set C, is the intersection of P, and a closed subset of P; there-
fore, (y is closed in P,. Consequently, the closed subsets of P, are
precisely the sets f(®) with @ closed in w@, which proves that the
transformation f is topological.

Now suppose that the imbedding of @ in P is combinatorial
and choose f e P. We have to prove that f e f(w@). This being
evident for 8¢ @, suppose' f ¢ P — Q. The imbedding of @ in P’
being regular, there exists a family ¢ of closed subsets F of @ such
that g = IIF for F ¢ @. Since § ¢ P — @, we must have IIF = 0.

LI
Now for any finite subfamily F,, F,, ..., Faof @, we have e [ | F},
1

whence [ Z: # 0, the imbedding of Q in P being combinatorial.
.1 ’
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As the space w@) is bicompact, there must exist a point « ¢ IIF
for F € @. Since f(F) = P,F C F, we have f(x) C IIF = B, whence
B = f(x) € [(«@Q).

4. Two points a and b of a space P will be said to be H-sepa-
rated if there exist two open sets G, and G, such that a e G}, b € G,,
G,G, = 0. A Hausdorff space is then a space such that any two
distinct points are H-separated. As was shown by Wallman (1. c.),
the space w@ is a Hausdorff space if, and only if, the space @ is
normal. We consider here the question of H-separability in w@
of two real points, a real and an ideal point, and two ideal points.
Clearly two H-separated points of a space P are H-separated in
every subspace of P containing them.

For a Hausdorff space @, two real points are always H-sepa-
rated in w@. This is a consequence of the following trivial theorem.

(4.1) If two points a and b are H-separated in a dense subspace
Q of a space P, a and b are H-separated in P.

Proof. There exist two open subsets H; and H, of @ -such that
aeH,, beH, H,H, = 0. Thesets F, = Q — H,and F, = Q — H,
are closed in Q and a e Q —Fy, be Q F,, F,+ F,= Q. There-
forea e P — Fl, beP—F, F, +F,=P.Thesets G, = P—F,
‘and G, =P—F,are openin P and ae Gy, be@,, G,G, = 0.

(4.2) A point a € Q 1s regular in w@ if, and only if, it is regular
n Q.
Proof. If a is regular in w@ then, of course, a is regular in @ C
C w@ as well. Let a be regular in @. If U is any neighborhood of
a in 0@, there exists a neighborhood @ of a in @ such that G* C U.
Since a in regular in @, there exists a neighborhood H of.a in @
the closure of which in @ is contained in G. It is easy to see that
H* is a neighborhood of a in w@ the closure of which is contained
in G*, whence in U.

(4.3) If a i3 an zrregular point of the bicompact space P, there
exists a point b e P — a such that a and b are not H-separated.

Proof. There exists a neighborhood U of a such that V —U + 0
for every neighborhood V of a. If ¥; (1 < ¢ < n) are neighborhoods

of a, then ﬁ V; is also a neighborhood of a, whence -
» L .

— n

[Fi—U)2T[Vi—U +o.
1=

1

The space being bicompact, there exists a point b such that b ¢ V —
— U for every neighborhood V of a. It is easy to see that a and b
are not H-separated.
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-1f the space @ is regular we see from (4.2) that a real and an
ideal point are always H-separated in w@). If @ is an irregular
Hausdorff space, we see from (4.1) and (4.3) that a real and an ideal
point are not always H-separated. If the regular space @ is not
normal, then two ideal points cannot be always H-separated,
since otherwise w@ would be a Hausdorff space, which it is not.

Example 6. Let @ be an irregular Hausdorff space containing
a finite subset K such that the subspace @ — K is normal; e. g.
Q = P,, K = 2z (see example 1 above). Then two different ideal
points « and f are always H-separated in w@. For there exists
a coordinate F'; of x and a coordinate F, of g such that F,F, = 0.
Then F, — K is a coordinate of x,F, — K is a coordinate of £,
and F, — K and F,— K are disjoint closed subsets of the normal
space @ — K. Hence there exist two open subsets @, and G, of
 — K such that /;, —KC@&, F,—KCG@, GG, + 0. Since
@ — K'is open in @, G, and G, are so also. Hence G,* is a neigh-
borhood of & in w@, G,* is a neighborhood of §in w@, and G, *G,* = 0,

% *
£ 3

‘0 regularnim a kombinatorickém vnofeni.
(Obsah prede¥lého &lanku)

V pojednini Lattices ang topological spaces (Annals of Math.
39 (1938), 112—127) piitadil H. Wallman libovolnému topologic-
kému prostoru ¢ urdity bikompaktn{ prostor w@. V tomto &élénku
dokazujeme, Ze blkompaktni prostor w@ je charakterisovan tim,
%e @ je do ného vnofen regularné a kombinatoricky. Pfi tom. pra-
vime, %e @ je ‘vnofen reguldrng do prostoru P, ]esthze kazda mno-
Zina uzaviensd v P je prumkem uzavéri mnozin uzavienych v Q
a pravime, Ze ¢ je vnofen kombinatoricky do prostoru P, ]esthze
kone&n$ mnoho disjunktnich relativné uzavienych éastf Q ma vidy
disjunktni uzévéry v P, Uddvame také n&kolik. piikladi objastiu-
jicich pojmy regulérniho a kombinatorického vnofeni.
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