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Časopis pro pěstováni matematiky a fysiky, roč. 72 (1947) 

On regular and combinatorial imbedding. 
By 

Eduard tech (Praha) and Josef Novak (Brno). 
(Received February 11th, 1947.) 

In his paper Lattices and topological spaces (Annals of Math. 
39 (1938), 112—127) H. Wallman constructed, for an arbitrary 
topological space*) Q, a definite bicompact space wQ containing 
Q a s a dense subset. In § 3 of the present paper, we prove that 
coQ may be characterised by the property that Q is both regularly 
and combinatorially imbedded in it. Regular imbedding is defined 
and analyzed in § 1, combinatorial imbedding, in-§ 2. In § 4, we 
consider the question whether two points may be separated by 
open subsets of coQ. 

1. D e f i n i t i o n . A subspace Q of a space P is said to be re-
gulary imbedded in P if the family (F) of the closures in P of all 
sets F closed in Q constitutes a closed basis of P, i. e. if every set 
closed in P is the intersection of some subfamily of the family 
(F). As P itself is closed in P, we have: 

(1.1) // Q is regularly imbedded in P, then Q is dense in P. 
(1.2) If Q is regularly imbedded in P and if Q C P0 C P, then 

Q is regularly imbedded in P a . 
D e f i n i t i o n . Let QcP- The point xeP is said to be a Q-

regular point of P if, for any set 0 C P — % closed m P, there 
exists a set F closed in Q such that $ C ^ C - ? — x, F indicating 
closure in P. Clearly: 

(1.3) Q C P is regularly imbedded in P if, and only if, (i) Q 
is dense in P, (ii) any point X€P is Q-regular in P. 

(IA) If x e P is a regular point of P, then x is Q-regular for any 
set Q dense in P. . - . . * • 

Proof. Let 0 C P — x be closed in P. Then P — 0 is a neigh­
borhood of x in P . As x is a regular point of P , there exists an open 

*) We consider only spaces in which the closure of any point set is 
v closed and, for convenience, we make also the easily avoidable assumption 
(not made by Wallman) that each finite point set is closed. 



neighborhood U of x in P_such that U C P — # . The set F = 
= Q— U is closedinQ SLiidF C P — U C P — x.AsQ = QU + F, 
we have P=QcU + Fc(P — &) + F, whence & C F. 

D e f i n i t i o n . A space P is called nearly regular if any Q dense 
in P is regularly imbedded in P . Prom (1.3) and (1.4) we have: 

(1.5) Any regular space is nearly regular. 
D e f i n i t i o n . A space P is called hereditarily nearly regular 

(h. n. r.) if every subspace of P is nearly regular. Since regularity 
is a hereditary property, (1.5) gives: 

(1.6) Any regular space is h, n. r. 
From (1.2) we see at once: 
(1.7) / / every closed subspace of P is nearly regular, then P is 

h. n. r. 
E x a m p l e 1. The space P t consists of the points xni (n = 

== 1, 2, 3, . . ., i = 1, 2, 3, . . .), x*(n =. 1, 2, 3, . . .), and z. Each 
point xm is an isolated point. The point xn possesses the funda­
mental neighborhoods Uni(k = 1, 2, 3, . . .) consisting of xn and 
Xni (i^\k). The point z possesses the fundamental neighborhoods 
Yk (k = 1, 2, 3 . . .) consisting of z and xnt (n ^> k, i ^ k). Clearly 
P-. is a countable Hausdorff space satisfying the second countability 
axiom; each point except z is regular. The subspace Qx consisting 
of z and all #m 's is dense in P l 5 but Q± is not regularly imbedded 
in Pl9 since the set 0 consisting of all o^n'sis closed in P l f but 0 is 
not of the form TIF for any family (F) of sets closed in Qx. Hence 
P1 is not nearly regular. 

E x a m p l e 2. The space P 2 consists of the points xnu yn% 
(n = 1, 2, 3, . . . , i = 1, 2, 3 , . . . ) , xn(n = 1, 2, 3 , . . .) , and z. The 
points xni and yni are isolated. Each point xn possesses the funda--
mental neighborhoods Unjc (k = 1, 2, 3 , . . . ) consisting of the points 
Xni (i ^ k), yni (i —\ %), and xn. The point z possesses the funda­
mental neighborhoods V* (k = 1, 2, 3 , . . . ) consisting of the points 
xni (^ ^ k, i^\ky and z. Again, P 2 is a countable Hausdorff 
space satisfying the second countability axiom and z is the only 
irregular point of P 2 . We shall prove that P 2 is nearly regular. 
Let Q be an^ dense subset of P 2 ; clearly Y C Q, Y being the set 
of all j/ni's. By (1.3) and (1.4) we have only to show that the point 
% is ^-regular. Let 0 C P2 — x be closed in P 2 . Then F = Q0 +_Y0 

is closed in Q, Y0 being the closure of Y in Q and clearly 0 C F C 
C P 2 —

 z- Hence z is Q-regular. Therefore P 2 is nearly regular, but 
not hereditarily, which follows from example 1. 

E x a m p l e 3. Let M be any uncountable set. The space P 3 

consists of the points xnf4 (n = 1, 2, 3 , . . . , p € M), xn (n = 1, 2, 3,. . .) , 
find z. The points xnfi are isolated. Each point xn possesses the 
fundamental neighborhoods Un-K consisting of the points xnfi 



(ft e M — K) and xn, where K runs over the family of all finite 
subsets of M. The point z possesses the fundamental neighborhoods 
Vk — Sk (k = 1, 2, 3,. . . ) , Vic consisting of the points xnfi (n 2> k, 
jti e M) and Sjc running over the family of all countable subsets of 
Vje. Clearly P 3 is a Hausdorff space and z is the only irregular point 
of P3 . We shall show that the space P 3 is h. n. r. Let Q denote 
any subspace of P 3 such that zsQ. By (1.3) and (1.4) we have 
only to show that, in the space Q, the point z is Q-regular. Let 
$ C 0 — z be closed in Q, hence in P3. Let Xn (n = 1, 2, 3,. . .) 
denote the set of the points xn(Jl (ft e M). For each n such that the 
set XnQ is infinite, choose an infinite countable subset Tnoi XnQ; 

let Tn = 0 if XnQ is finite. Then F = Q& + /]T :rJ0 , the subscript 

0 indicating closure in Q, is closed in Q and it is easy to see that 
0 C F C P 3 — 2, which proves 2 to be Q-regular in Q. 

2. Definit ion. Let n = 2, 3, 4,. . . . A subspace © of a space 
P is said to be n-combinatorially imbedded in P if, for any choice 

n 
P1? P 2 , . . . , Fn of relatively closed subsets of Q such that TT Fi = 0 

w 1 

we have TTi^ = 0. Clearly ra-combinatorial imbedding implies 
I 

^-combinatorial imbedding for 2 <̂  n < m. The imbedding is said 
to be combinatorial if it is ^-combinatorial for each n = 2,3, 4 , . . . 

Definit ion. A subspace Q of a space P is said to be combi^ 
natorially imbedded in P in the strong sense if, for any choice Fl9 F2 
of relatively closed subsets of Q we have FXF2 = FXF2. By an easy 
induction, this implies IJFi = TIFi for any finite number of rela­
tively closed Fi C Q, so that combinatorial imbedding in the strong 
sense implies ordinary combinatorial imbedding. 

(2.1) Let Q be 2-combinatorially imbedded in a regular space P. 
Then Q is combinatorially imbedded in P in the strong sense. 

Proof. Suppose, on the contrary, that there exist two relatively 
closed sets Fx C Q_and F2cQ such that FXF2 + ~FXY2. Then there 
exists a point x e FtF2 — FXF2. By regularity, there exists an open 
neighborhood U of x in P such that UF1F2 *m 0, whence UF1F2 = 0. 
Clearly x e 0X02 where the sets &x = P-^cTand &2 = F2Ua,re closed 
in Q. But this is impossible, since <P1

(P2 =-= 0 and Q is 2-combinato­
rially imbedded in P . 

For n = 0, 1, 2, . . . let con denote the least ordinal number 
of power 8» and Zn, the set of all ordinal numbers I < con. 

Example 4. Let P 4 = Z1 + cov Each £ e Z% possesses the 
fundamental system of neighborhoods U& (v * %i> V < £)» where 



Utn consists of all ordinals f such that rj < f <1 f. The point coi 
possesses the fundamental system of neighborhoods Vt (f € Zx), 
where F | consists of cox together with all i s o l a t e d ordinals rj e Zl9 
rj > f. Clearly P 4 is a Hausdorff space and cox is the only irregular 
point of P4 . Then Zx is cbmbinatorially imbedded in P4 . Suppose, 
on the contrary, that there exist relatively closed sets Fi C Zx 

n n  
(1 ^ i <̂  n) such that |~J Fi = 0 #= ]~J F\. Then it is clear that no 

1 I 

Fi is countable. But then there exist points f* e Zx (k — 0, 1, 2 , . . . ) 
such that f o < f i < f 2 < • • • a n ( i 

f/n * -^u fjn+i € F7-.,. . . , fjn+n— i 6 .Fft (?' == 0, 1, 2 , . . . ) 
n 

which is impossible, since it implies lim f * e TT FV Hence Zx is 
1 

combinatorially imbedded in P4, but not in the strong sense. For 
let F1 consist of the points 

f, f + 1, f + 3 , f + 5 , . . . 

and F2, of the points 

f, f + 2, f + 4 , . f + 6 , . . . , . 

f e Zx running over all non isolated ordinals. The sets Fr C Zx and 
F2 C Z2 are relatively closed and we have cox e F±F2 — Pi-F2. 

Lemma.*) Let m, ix, i2, . . . , im be integers such that m >̂ 1, 
0 <̂  ix < i2 < . . . < t\,t. Let S =- $({.,, i2, . . . , im) be the cartesian 
product 

{Zix + coO X (Z;, + coit) X . . . X (Z,w + coij 

in,its ijsual topology. Let J. be a subset of Zix x Zix X . . . X Zim 

such that (cof,, co ,̂ . . . , ci>tJeJ\ Choose an integer r such that 
1 <̂  r <̂  m and an ordinal <% e Zif. Then ^ contains a point (fls 

f2» • • • J fm) such that f,.=-= coig for 1 <̂  5 <J m, 5 4= r and a < f f < a>*f. 
Proof. The lemma being trivial for m =- 1, we may assume 

its valitidy for m— 1. Suppose first r < ra. Since (coix, coit, . . . , 
coim) cA, for a given (04, oc2, ..., *m) e Zfi X Zit X . . . X Z ^ the 
set -4 contains points (fi, f2, . . . , fm) such that ax < fx < o>t1} — , 
• - •, «» < fm < <*>*m. The cardinal number of the set of all such 
points (f x, f 2, . . . , fw) bfeing equal to Xm, whence greater than the 
cardinal number of Zit X . . . X Z* , the cardinal number of the 
set of our points will remain equal to Hm even if we restrict the 

*) This lemma is a fairly obvious generalization of a result of A. 
Tychonoff (Math. Annalen 102, 1930, see Behauptung I., on p. 553 and 
Behauptung III., on p. 555). 
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first m — 1 coordinates to fixed, but conveniently chosen, values. 
Therefore, Á contains points (f l 9£2 , • • • > fm) such that <x8 < £8 < a)i8 

for 1 < s < m — 1 and £m = COÍ . Nów if B denotes the set of al] 
(f 19 . . . , fm-!) e Zťl X . . . X Z * ^ such that (f x, . . . , fm_1? cotm) 6 J[ 
we háve clearly (co^, . . . , COÍOT ) e 2? in the space S(il9 . . . , iw_!). 
The lemma being true for m—1, B contains a point (f1? . . . , 
. . . , fm_i) such tha t | 8 = cotg for 1 <Ls <Lm — 1, s 4= r and oc < 
< fr < ct>ir; but then (|1? . . . , Smr-i, Wim) € Á. Secondly, let r = m. 
Choose (<%2, . . . , o(m) e Zi2 x . . . X Zifn. By transfinite induction, 
we may construet a transfinite sequence (p\) of type co^ of points 
Px = (f^i, . . . , šxm) e A such tha t &n < fm, . . . , hm < Š»m for A < 
< ^ < eoťl and £Af > *2, . . . , f j T O > <*m for all A's. The point p = 
= (| l5 . . . , | w ) = lim PA belongs to Á and we háve | x = co^ and 
<*«<£«< <*>i for 2 <1 5 <1 m. Hence if JB denotes the set of all 
(f2> . . ., řm) * £t\ X . . . X Z l m such that (cotl, £2, . . . , fm) e Jí we 
háve (o)^, . . . , co»m) e i? in the space S(i2, . . . , iw). The lemma being 
true for m — 1, B contains a point (f2, . . . , fm) such tha t | 8 = m8 

for 2 <1 5 <1 m — 1 and a < | m < (oim\ but then (co^, f2} . . . , fm) 

E x a m p l e 5.*) Let w = 3, 4, 5, The space P 6 consists of 
all w-tuples (|j,, f 2, . . . , f») such tha t fi € Z» + a>i for 1 <^ i ^ n 
and & = co* for a t least one i. We put z = (a^, co2, . . . , con). The 
point £ = (f JL, f 2, . . . , | n ) c P 6 — z possesses the fundamental systém 
of neighborhoods V^(rjl91]2, . . . , rjn) (rji e Zi, rji < & for 1 <1 i <1 w) 
consisting of all n-tuples (fl9 £2, • • • > ín) € P 5 such tha t r\% < & ^ fi 
for 1 ^ i ^ n. The point z possesses the fundamental systém of 
neighborhoods V(^l9 f2, • • •> fn) (fi e Z» for 1 <^ i ^ w) consisting 
of 2 together with all points (rji, rj2, . . •, ^n) € P 6 such tha t rji > & 
for 1 ^ i <^ n and iyt- = COÍ for one and only one value of i. Clearly 
P 6 is a Hausdorff space and z is the only irregular point of P 6 . For 
1 ^ i ^ n, let 0 i consist of all points (fx, f2, . . . , fn) e Ph — z such 
tha t li = a>{. Then the sets &t C P 5 — 2: are relatively closed and 

n n __ 
we háve 17 #< == 0, I~I ^ = 2> whence P 5 — 2 is not n-combina-

1 1 

torially imbedded in P 6 . However, we shall show tha t this im-
bedding is (n— l)-combinatorial. First, let us put Si = S(jl9 . . ř , 
....,/n—!) (see the lemma above) the sequence jl9 . . . , ^ _ 1 being 
obtained from the sequence 1, 2, . . . , n by cancelling the term i. 
K /* (1 ^ i ^ ^) denotes the cancelling of the i-th coordinate, 

*) This example (for n = 3) is due to M. K a t ě t o v . 
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then fi(0i + z) = Si is 1 — 1, though not topological; however, 
the partial transformation fi(0i) = Si — z is a homeomorphism. 
Now let the sets FVC-P5 — z (1 ^\r <^n — 1) be relatively closed 

n—1 n—1 

and let z e Yl Fr. We have to show that Yl Fr 4= 0. Since P 5 — z = 
1 1 

= V $i, for each T(l <[ r <̂  w — 1) there must exist an ir(l <L ir <\ n) 
1 j _ ' 

such that z e Fr0ir. Now this relation valid in the space P 5 evi­

dently implies the analogous relation z e fir(Fr0
fir) in the space 

Sir where 0'ir = 0ir— 2 &?- Since r assumes only n— 1 values, 
j =•= v 

there exists an integer s such that 1 <̂  s <L n and s 4= ir for 1 _.. 
<\r <\n — 1. Using the lemma and recalling that fir(0i) = Sir — z 
is a homeomorphism, we see that, for any given ordinal n e Z8 and 
for any r (1 <\r <\n — 1), there exists a point p = (ft, f2, . . . , £n) e 
€ .Ff0<r such that & = co,- for 1 _\ i <L n, i 4- s and oc < !• < co8. 
Of course, we have p e Fr0ir since the set Fr0ir C -P5 — 2 is relati­
vely closed. By induction, we may now construct an infinite 
sequence of points p^ = (f*,., fj.2, . . ., |jfcn) such that hi = ^i for 
1 <L i ^ n, i + s and all fc's, f 18 < f 2̂  < £3, < . . . < co8 ?tnd 
Pib e ̂ 0 ^ for 1 <\r <Ln — 1, k = r mod (n — 1). There exists 

n—1 n—1 

the limit point p = lim p* and clearly p e \~\Fr, whence PJ Fr 4= 0. 
1 1 . ' 

3. Let Q be any given topological space. We recall briefly the 
definition of Wallman's bicompact space coQ D Q. Points of coQ — Q 
will be called ideal joints and points of Q, real points. We have to 
define first the ideal points and secondly the topology of coQ. An 
ideal point a is, by definition, a collection of subsets of Q (called 
the coordinates of a) having the following properties: 

(i) the elements of the collection are non vacuous closed 
subsets of Q, 

(ii) the intersection of any finite number of elements of the 
collection belongs itself to the collection, 

(tit) any closed subset of Q intersecting each element of the 
collection belongs itself to the collection, 

(iv) the intersection of the whole collection is vacuous. 
For any open subset G of Q, let G* consist of all real points 

belonging to <? and of all ideal points a such that there exists some 
coordinate AQG of a. If G runs over the family of all open 
subsets of Q then G* runs over an open basis of coQ, thus 
defininfg the topology of coQ. For any closed subset F of Q, the 

12 



•closure F of F in coQ consists of all real points belonging to F and 
of all ideal points <x such tha t F is a coordinate of <x. 

(3.1) The imbedding of an arbitrary topological space Q in 
Wallmari's bicompact space coQ is both regular and combinatorial in 
the strong sense. 

Proof. We begin by proving tha t the imbedding is regular. 
Q is clearly dense in coQ. Let x be any point (real or ideal) of coQ 
and let 0 b e a closed subset of coQ not containing x. By (1.3) it 
suffices to indicate a closed subset F of Q such tha t 0 C F C coQ — x. 

^ Since x belongs to the open subset coQ — 0 of coQ, there exists an 
'open subset G of Q such that x<-G*CcoQ — 0. Then F = # — G 
is a closed subset of Q. Since x e G*, we cannot have x € F. This 
is evident if a; is real; if # is ideal, then x e G*, x e F would mean 
tha t x has a coordinate A C G as well as the coordinate F, which 
is impossible as GF = 0. I t remains to show that <x e F for any 
i\ e 0. For a real <x this is a consequence of the evident relation 
Q0 CQ — G = F\ if <x is ideal, the inclusion G* C coQ — 0 shows 
that , since <x e0, any coordinate of <x meets Q — G ==- F so tha t 
F itself is a coordinate of <x whence ex e F. 

I t remains to show tha t the imbedding is combinatorial in 
the strong sense. Let Fx and F2 be two closed subsets of Q and let 
<x e-FxF2\ we have to prove tha t <x e-F-FV This being evident for 
a real a, let <x be ideal. Then <x e Fx, <x e F2 means that both Fx and 
F2 are coordinates of <x so that F1F2 is also a coordinate of a whence 
x€l\F2. • m 

(3.2) Z/eJ £&6 space Q be both regularly and 2-combinatorially 
imbedded in the bicompact space P. Then there exists a homeomor-
phism f(coQ) C P such that f(x) — x for each x eQ. If the imbedding 
is combinatorial, we have f(coQ) = P.*) 

Proof. For any X CQ9 let X denote the closure of X in the 
space coQ and X, the closure in the space P . For $ c Q, let f(x) = x. 
We next define f(<x) for an ideal point <x of coQ. Now <x is, by defi­
nition, a collection of closed subsets of Q having properties (i) to 
(iv). Let <x* denote the collection of all sets A, A running over <x. 
By properties (i) and (ii), the intersection of a finite subcollection 
of <x': is never vacuous; the space P being bicompact, the, inter­
section <p(<x) of the whole collection <x° is not vacuous either; by 
property (iv), Q.<p(<x) = 0. Hence cp(<x) contains at least one point 
J8 € P — Q. We have ft eA for any A c <x. Conversely, let F be a 
closed subset of Q such that ft <r F. Then AF contains ft for any 

*) We do not know whether f(coQ) -= P whenever the imbedding is 
2-combinatoriaL 
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A e oc. The imbedding of Q in P being 2-combinatorial, it follows 
that AF + 0 for each A e a, whence F e oc by property (Hi). Hence 
the collection oc consists exactly of those closed subsets A of Q 
for which the relation fi e A holds true. Now by regularity of the 
imbedding of Q in P, the one point closed subset (/J) of P is the 
intersection of all such A's. It follows that the set <p(a) consists of 
just the one point /? and we may put f(oc) = /?. The transformation 
f(<oQ) C P so defined is clearly 1 — 1 and f(x) = x for each x e Q. 
Let us put f(coQ) = P0 so that Q C P 0 C P. 

For any closed subset F of Q we must have f(F) = P0.F. 
Suppose first that f$eP0.F\ we have to prove that /3e/(P). If* 
P e Q, then /? e P C /(P); hence suppose /? e P 0 — Q. By definition 
of P0 , there exists an ideal point oc of coQ such that /? = f(x)\oc 
consists of all closed subsets A of Q such that ft e A; since /? e P, 
we have F € oc, whence a e F and /? = /(a) C f(F). Conversely, let 
ft e f(F) so that ft e P0\ we have to prove that jScF. There exists 
an (% e F such that /? = f(oc). If a is real, we have /? = oc e P C /(P). 
If a is ideal, then a e P means F e oc, whence p = f(oi) e F. 

Let C0 be a closed subset of P0 . There exists a closed C of P 
such that C0 = P0 . C. The imbedding of Q in P being regular, 
there exists a family <p of closed subsets F oiQ such that C = TIP, 
whence O0 = 77P 0 .P , P running over <p. But P0.F = f(F) and the 
transformation / being 1 — 1, we have C0 = Ilf(F) = f(IIF). 
Hence each closed subset C0 of P 0 has the form C0 = f(0), 0 being 
closed in coQ. Conversely, let 0 be closed in coQ. By (3.1), the 
imbedding of Q in coQ is regular. Hence there exists a family <p 
of closed subsets F of Q such that 0 = IIF. The transformation 
/ being 1 — 1, we have C0 = f(0) = 77/(P) = J7P0 .P = P0 .77P, 
The set C0 is the intersection of P 0 and a closed subset of P; there^ 
fore, C0 is closed in P0 . Consequently, the closed subsets of P 0 are 
precisely the sets f(0) with 0 closed in coQ, which proves that the 
transformation / is topological. 

Now suppose that the imbedding of Q in P is combinatorial 
and choose fi e P. We have to prove that fl e f(coQ). This being 
evident for /? e Q, suppose'/3eP — Q. The imbedding of Q in P 
being regular, there exists a family <p of closed subsets F of Q such 
that j8 = IIF for F e 0 . Since /3 e P — Q, we must have i7P = 0. 

Now for any finite subfamily P l s P2 , . . . , Fn of 0 , we have ft e J [̂ P», 
I 

n 
whence J~J P { 4= 0, the imbedding of Q in P being combinatorial. 

i 
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As the space coQ is bicompact, there must exist a point a € nF 
for F € 0. Since f(F) = pj1 C F, we have f(a) C IIF = p, whence 
P = f(*)€f(coQ). 

4. Two points a and 6 of a space P will be said to be H-sepa-
rated if there exist two open sets Gx and G2 such that a e Gif b e G2, 
GXG2 = 0. A Hausdorff space is then a space such that any two 
distinct points are //-separated. As was shown by Wallman (1. c ) , 
the space coQ is a Hausdorff space if, and only if, the space Q is 
normal. We consider here the question of //-separability in coQ 
of two real points, a real and an ideal point, and two ideal points. 
Clearly two //-separated points of a space P are H-separated in 
every subspace of P containing 'them. 

For a Hausdorff space Q, two real points are always //-sepa­
rated in coQ. This is a consequence of the following trivial theorem. 

(4.1) If two points a and b are H-separated in a dense subspace 
Q of a space P, a and b are H-separated in P. 

Proof. There exist two open subsets Hi and H2 of Q such that 
aeH^be H2, HXH2 = 0. The sets Fx = Q — H1 and F2 = Q — H2 

are closed in Q and a cQ — Fl3 beQ — F2, Fx + F2= Q. There­
fore -a e P — ~Fly_b eP — F2, Fx +-F2 = P. The sets GX = P — Fx 

and G2 = P — F2 are open in P and a e Gx, b e G2, G±G2 = 0. 
(4.2) A point acQ is regular in coQ if, and only if, it is regular 

in Q. 
Proof. If a is regular in coQ then, of course, a is regular in Q C 

C coQ as well. Let a be regular in Q. If U is any neighborhood of 
a in coQ, there exists a neighborhood G of a in Q such that G* C U. 
Since a in regular in Q, there exists a neighborhood H of .a in Q 
the closure of which in Q is contained in G. I t is easy to see tha t 
H* is a neighborhood of a in coQ the closure of which is contained 
in (?*, whence in U. 

(4.3) / / a is an irregular point of the bicompact space P, there 
exists a point b e P — a such that a and b are not H-separated. 

Proof. There exists a neighborhood U of a such that V — U #= 0 
for every neighborhood V of a. If Vi (1 <I i <1 n) are neighborhoods 

P 

of a, then T~T Vi is also a neighborhood of a, whence -
I 

YHVi— u)Dy\Vi — c!#=o. 
l l 

The space being bicompact, there exists a point b such that b c V — 
— U for every neighborhood V of a. I t is easy to see tha t a and 6 
are not H-separated. 
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If the space Q is regular, we see from (4.2) that a real and an 
ideal point are always if-separated in coQ. If Q is an irregular 
Hausdorff space, we see from (4.1) and (4.3) that a real and an ideal 
point are not always iI-separated. If the regular space Q is not 
normal, then two ideal points cannot be always Ff-separated, 
since otherwise coQ would be a Hausdorff space, which it is not. 

E x a m p l e 6. Let Q be an irregular Hausdorff space containing 
a finite subset K such that the subspace Q — K is normal; e. g. 
Q = Plt K = z (see example 1 above). Then two different ideal 
points x and /? are always //-separated in coQ. For there exists 
a coordinate Ft of oc and a coordinate F2 of /? such that FXF2 = 0. 
Then Fn — K is a coordinate of oc, ~F2 — K is a coordinate of /S, 
and Fx — K and F2 — K are disjoint closed subsets of thq normal 
space Q — K. Hence there exist two open subsets G1 and G? of 
Q — K such that F1 — KcG1, F2 — KQG2, GXG2 =f= 0. Since 
Q — K is open in Q> Gx and G2 are so also. Hence Gx* is a neigh­
borhood of oc in coQ, G2* is a neighborhood of/Sin coQ, and GX*G2* = 0. 

0 regulárním a kombinatorickém vnoření. 
( O b s a h p ř e d e š l é h o č lánku.) 

V pojednání Lattices and tppological spaces (Annals of Math. 
39 (1938), 112—127) přiřadil H. Wallman libovolnému topologic­
kému prostoru Q určitý bikompaktní prostor coQ. V tomto článku 
dokazujeme, že bikompaktní prostor coQ je charakterisován tím, 
že Q je do něho vnořen regulárně a kombinatoricky. Při tom pra­
víme, že Q je Vnořen regulárně do prostoru P, jestliže každá^mno-
žina uzavřená v P je průnikem uzávěrů množin uzavřených v Q 
a pravíme, že Q je vnořen kombinatoricky do prostoru P, jestliže 
konečně mnoho disjunktních relativně uzavřených částí Q má vždy 
disjunktní uzávěry v P. Udáváme také několik příkladů objasňu­
jících pojmy regulárního a kombinatorického vnoření. 
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