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Stable points of unit ball in Orlicz spaces

MAREK WISLA

Abstract. The aim of this paper is to investigate stability of unit ball in Orlicz spaces,
endowed with the Luxemburg norm, from the “local” point of view. Firstly, those points
of the unit ball are characterized which are stable, i.e., at which the map z — {(z,y) :
%(x + y) = z} is lower-semicontinuous. Then the main theorem is established: An Orlicz
space L¥(u) has stable unit ball if and only if either L¥(u) is finite dimensional or it is
isometric to L% (i) or ¢ satisfies the condition A, or A% (appropriate to the measure u
and the function ¢) or ¢(¢) < 00, p(c(p)) < oo and p(T) < oo. Finally, it is proved that
the set of all stable points of norm one is dense in the unit sphere S(L¥(u)).

Keywords: stable point, stable unit ball, extreme point, Orlicz space
Classification: 46E30

1. Introduction.

A convex set C' of a real Hausdorff topological space X is called stable if the
midpoint map ® : C x C — C,®(z,y) = %(:v + y) is open with respect to the
inherited topology in C [1], [4]. Stable compact sets have been investigated in [5],
[9], [13]. Stability is a useful tool in studying extremal operators between Banach
spaces [1]. Further, the set of extreme points of a stable set is closed. Thus “stabil-
ity” arguments can be applied to the description of extreme points of the unit ball
of C(K,X), K being a compact Hausdorff space and X a Banach space, namely,
applying the Michael selection theorem [7],

f e ExtB(C(K, X)) < f(k) € Ext B(X) for every ke K

provided the unit ball B(X) of X is stable.
Finite dimensional Banach spaces (with dim X > 2) can have non-stable unit
balls, for let X = R3 and

B = conv({(z,9,0) : 2% + ¢y* <1} U {(£1,0+1)}).

A full description of stable convex subsets of finite dimensional topological spaces
can be found in [11]. The above defined set B cannot be a unit ball of any generalized
finite dimensional Orlicz space — this is due to the fact that every such space has
stable unit ball [3], [15]. This property is no longer true in the infinite dimensional
case; even in the case of classical Orlicz sequence spaces £, : £, has stable unit ball
if and only if either £, is isometric to £°° or ¢ satisfies the condition Ag [14].

The aim of this paper is to extend the latter result to the case of Orlicz spaces
L¥#(u) of functions defined on an arbitrary measure space via the description of
stable points of the unit ball B(L¥(u)).
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2. Basic definition and auxiliary results.

Let (T, X, 1) be a measure space with a nonnegative, o-finite and complete mea-
sure p (u 2 0) and let ¢ : R — [0,+00] be a convex, even, non-identically equal
to 0, vanishing at 0 and left-continuous for a > 0 function such that ¢(¢) = sup{a :
p(a) < oo} > 0. By an Orlicz space L?(p) ([8], [10]), we mean the set of all
measurable functions = : T — R such that I,(Az) < oo for some A > 0, where the
modular /,, is defined by

(@) = [ e(att) d

L¥#(p) is equipped with the equality “almost everywhere” (a.e.) and the Luxem-
burg norm [6]
||l = inf{A >0: Isp(/\_lx) <1}

(Note that ||z|, < 1iff Ip(x) < 1; Ip(x) = 1 implies |[z]|, = 1; Iy(z) < 1 =
(llzllp = 1 iff I,(Ax) = 400 for every A > 1); ||xn — x|l — 0 iff I,(A(zp —2)) — 0
for every A > 0.) The subspace

E?(u) ={x € L?(u) : I,(Ax) < oo for every X > 0}

is called the space of finite elements.
Let r be any number greater than 1. The function ¢ is said to satisfy the
condition A, (¢ € A, in short) if:

(a) there exists a constant ¢ > 1 such that p(ra) < cp(a) for every a (re-
spectively, every a > ag,¢(ag) < oo) provided p is atomless and infinite
(respectively, finite);

(b) there exist b > 0,¢ > 1 and a nonnegative sequence (dy,) such that X,d, <
00, and @(ra)u(en) < cp(a)pu(en) + dp, for every a with p(a)u(e,) < b and
every n € N provided p is purely atomic and {e, : n € N C N} is the set of
all atoms of T'.

(¢) a combination of (a) and (b) if T has both an atomless and purely atomic
part.

If ¢(p) = oo, then
p €A, forsome r>1<=pe A, forevery r>1<= p € Ag.

The above equivalences remain true if p is atomless (then ¢ € A, for some r > 1
implies that ¢(¢) = o0). If u is purely atomic with Yyu(e,) = oo and ¢ € A,
for some r > 1, then ¢ vanishes only at 0 (indeed, dn, > ¢(ra(¢))u(en) for every
n € N, where a(¢) = sup{a : ¢(a) = 0}). Thus the above equivalences hold
true also in the case of purely atomic measure ; with an infinite number of atoms
provided 0 < inf, pu(en) < sup, p(en) < oo — no matter whether ¢ takes only
finite values or not (if ¢ € Ay, then evidently ¢ € A, for every 1 < r < rg; for
r > 1o, consider by = p(a’rg/r) - infy u(en) > 0, where @’ = sup{a > 0 : p(a) <
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bro/ sup, p(en)} > 0). If dim L¥ () < oo (i.e., T consists of a finite number of
atoms), then ¢ € A, for some r > 1 if and only if L¥(u) is not isometric to L% ()
(take any ag € (a(p),c(p)), 1 < r < c(¢)/ag and put b = ¢(ag) - inf, p(en) >
0,dn = p(rag) - sup, pu(en) < 00). However, if 0 < a(p) < ¢(¢) < oo then ¢ does
not satisfy the condition A, for any r > ¢(¢)/a(y).

Note that if ¢(p) = oo and L¥(u) is finite dimensional, then L¥(u) = E¥(u). If
¢(p) = oo and dim L?(u) = oo, the equality L¥(u) = E¥(u) holds if and only if
© € Ag (cf. [8, Theorem 8.13, p. 52|, see also the proof of Lemma 5 below), thus,
applying the Lebesgue dominated convergence theorem, we have then

(Ip(x) =1 <= ||z]|, =1) if and only if ¢ € Ay.

In fact, we can replace the condition Ag by A, for some r > 1 in the last equivalence.
Then the assumption ¢(p) = oo is used in the “if” part of the proof only, so, in any
case, we have that if ¢ ¢ A, for any r > 1, then there exists © € L¥(u) such that
|lz|l, =1 but I,(x) < 1 and that is what we need in the sequel.

If ¥ contains only a finite number, say m, of atoms, then the Orlicz space L? ()
can be identified with the finite dimensional generalized Orlicz space 0(#150m)
which consists of all (finite) sequences x = (zp)"_; with I,(x) = " 0on(Az,) <
oo for some A > 0, where ¢n(a) = ¢(a)u({en}), n = 1,2,...,m, yielded with the
Luxemburg norm. The unit ball of that space is stable [3], [15] independently of
the shape of the function .

The infinite dimensional case of Orlicz spaces was investigated by A. Suarez—
Granero [12]: B(L¥(u)) is stable provided ¢ takes only finite values and ¢ € As.
In the sequel, we shall use that result, but in a somewhat weakened form (cf. Propo-
sition 1 below).

Let C be a convex set of a topological vector space and let ® : C x C — C be
defined by ®(z,y) = %(w +y). A point z € C is called stable (or C' is said to be
stable at z, cf. [11, p. 197]) if for every (x,y) € C x C with %(:v—i—y) = z and every
open neighborhood W of (z,y), ®(W) is an open neighborhood of z. Equivalently,
z is stable if and only if the mapping

Cs¢—dY(O)eCxC

is lower-semicontinuous at z, that is, if, for any open set W C C' x C' with W N
®~1(2) # 0, there exists an open neighborhood U € C of z such that WN®~1(¢) #
() for every ¢ € U. Therefore C is stable if and only if every point z € C' is stable.

Let us note that every extreme point is stable and that the stability of a point z
with ||z|| < 1 can be deduced from the fact that every open convex set is stable.
Further, L°°(p) has the 3.2 intersection property, so its unit ball is stable (cf. [1]).

Let us turn back to the Suarez—Granero result. Omitting the assumption that ¢
takes only finite values (it is superfluous there) we have

Proposition 1 [12]. Every point z € B(L¥(u)) with I,(2) = 1 is stable.
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Note. In order to establish stability of a point z € B(L¥(u)) it is sufficient to
restrict the investigation to the case of L¥(u) being neither finite dimensional nor
isometric to L>°(u) and to the case of z with norm one, modular less than one and
not being an extremal point of B(L¥(u)).

Then z will be stable if for every € > 0 and every distinct =,y of norm one with
%(x +y) = z (if eg. ||z]|p < 1 then [[z]|, < 1) there exists § > 0 such that for
every w with ||w — z||, < 0 we can find u,v € B(L¥(u)) satisfying the following
conditions:

1
lu—=zl,<e, [v—yly,<e and wzi(u—f—v).

If 2,y € B(L¥(u)), z = %(w +y) and I,(z) = 1, then an easy calculation shows
that ¢(2(t)) = [p(x(t)) + ¢(y(t))] for almost every ¢ € T (i.e., ¢ is affine on each
non one-point interval [min{|z(¢)], |y(¢)|}, max{|z(¢)|, |y(¢)|}] for a.e. t € T). The
next proposition provides conditions under which the converse implication holds
true as well.

Proposition 2. Assume that L¥(u) is neither finite dimensional nor isometric to
L>°(u). Let z € B(L¥ (1)) and define, for n =2,3,.. .,

Ap={teT:|z(t)| < (1- %)c(g@)}, if ¢(p) < oo and ¢(c(p)) < oo

and A, = T otherwise. If ||zxa,l|lp = 1 for some n > 2, then the following
conditions are equivalent:
() () <1,
(ii) there exist a set E C Ay, of positive measure and functions x,y € B(L?(u))
such that %(w +y) =2, |l2xEllp <1 and

20(z(t)) < o(z(t)) + ¢(y(t)) forevery te E.

PrOOF: We should only prove the implication (i) = (ii). Let T'= M U S, where
M, S denote, respectively, the purely atomic and atomless part of the measure space
(T, %, ). Then either |zxarna,lle = 1 or |[zxsna,lle = 1. Indeed, otherwise
Io(A2xarna,) < 1 and I,(Azxsna,) < 1 for some A > 1, so I,(Azx4,) < oo and,
in virtue of the Lebesgue dominated convergence theorem, Lp(/\’zx A,,) < 1 for some
1< N < e, |lzxa,lle < (M)7! < 1 - a contradiction.

Let 1 < ¢ < 2 be a number such that (1 — %)g < 1. The rest of the proof will be
split into two parts.

1°)  |lzxsna,lle = 1. Since I,(02x5nA4,,) = +00, the set
D={te A, NS 2(:(t) < plo2(t)}

is of positive measure. We claim that there exists 1 < ¢’ < p such that p(¢'z(t)) <
oo on some subset F' C D of positive measure. That is clear (9 = ¢’) when either
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c(p) = oo or ¢(p) < oo with p(c(p)) < co. Suppose that c¢(¢) < 00, p(c(p)) = o
and that p(¢'2(t)) = oo for every 1 < ¢’ < p and a.e. t € D. Then ¢|z(t)] > c(p
for every 1 < o < 0; so |z(t)] > c(g) for ae. t € D. Hence I,(z) =
a contradiction. To simplify the notation we shall assume that o' = o.

Applying the fact that ¢(0z(t)) < oo for t € F', we can find a set E C F such
that I,(0zxg) <1 —Iy(2) < 1. Thus |[2xglle < 07! < 1. Define

T =zxp\E+02XE: Y=2X1\E+ (2-0)2xE.
Plainly, z,y € B(L¥(u)). Further, for every t € E,
p(z(t) + e(y(t) = e(ez(t) > 2¢(2(1)-
2°)  |lexmna,lle = 1. By assumptions, c(¢) > 0 and the set M N A, is infinite.
Without loss of generality, we can identify M N A, with the set N of all natural

numbers.
Since I,(2xn) < 1, there exists p € N such that

Iﬂp(zx{p,zﬂrl,--- }) <2,

where n =1 —I,(z) > 0.
Define {(p,m) = {p,p+1,...,m} if m > p, (p,m) = 0 otherwise. Further, let

h(m) = ISD(ZXT\(p,m)) + I¢(92X<p7m>)7 meN.
Since I,(0zxN) = 00, h(m) — o0 as m — co. Let ¢ := min{m >p —1:h(m) < 1}.
Then 0 < h(g) < 1 and 1 < h(g+ 1) < co. Since, in any case, the interval
[¢(2g+1), p(02¢+1)] is contained in the range of ¢ (which is equal to [0, ¢(c(p))] U
{00} if ¢(p) < 00 and to [0,00) if ¢(p) = 00) we can find 1 < 0 < p < 2 such that
I,(T) = 1, where

T=AXT\(p.a+1) T 0¥ X(p.g) T 72X (g1} -
Note that I (02X7\(p,q+1)) = o0 (otherwise I,(0z) < oo, so [[z[|p < 1). Using

similar arguments, we infer the existence of the numbers r € N;r > ¢+ 1 and
1 <7 < p < 2such that I,(y) = 1, where

Y =2XT\(pr+1) T (2= 0)2X(p,q) T (2 = 0)2X(g41) + 02X (g12,7) T T2X{r41} -

Put
T = 2XT\(pr+1) T 02X (pg) T 02X {q+1} + (2= 0)2X (g2 + (2= T)2X(r41} -
Obviously %(:v +y) =z and I,(x) < I,(T) = 1. Further

Io(x) 2 1p(T) — Io(2X(gy2,41)) 2 1 = Lo(2X(ppt1,..}) > 1= 2.
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Finally, observe that ¢ is not affine on at least one interval from the following
ones:

(2 = 0)z(m)|, olz(m)|], m € (p,q) U{qg+2,7);
[(2=0)lz(g+1)], olz(g+1)|l; [(2—7)z(r+1)], Tz(r + 1)]].

Indeed, otherwise,
Ip(x) 4+ Ip(y) = 21,(2) = 2(1 — n);

so I,(x) =1 — 2n — a contradiction.

Taking E = {i}, where i € (p,r + 1) is that index for which ¢ is not affine on
the corresponding interval, all the requirements of (ii) are satisfied and the proof of
Proposition 2 is concluded. O

3. Main results.

Theorem 3. A point z € B(L¥(u)) is stable if and only if at least one of the
following conditions is satisfied:

(i) L¥(w) is finite dimensional,

Ap={teT:|2(t)] < (1— %)c(g@)}.

PROOF: (<) The sufficiency of each of the conditions (i) = (iv) was discussed in
Section 2.

Let us assume that none of the conditions (i) = (iv) is satisfied, but (v) holds. It is
easy to check that ¢(c(¢)) > 0 (otherwise L¥(y) is isometric to L°°(u)). Let z,y be
arbitrary elements of B(L¥ (1)) such that x # y, %(:v—i—y) = zand [|z[|, = [yl = 1.
Fix 0 < ¢ < 1 and take o € (%, 1) such that ||z — T[], < % ceand ||y =7y < % - €,
where

T=ar+(1—-a)y, 7=(1—-a)z+ ay.

Evidently, %(E +7) = z and T # . Further, 2(t) = z(¢t) iff y(¢t) = y(¢) iff 2(t) =
y(t) = 2(t). Thus ||Txa, ||, < 1and ||[7xa, |, <1 for every n > 2.

Let B, ={teT:(1- %)c(cp) < z(t)] < elp)},n >2,and C = {t € T :
|2(t)| = c(p)}. We have T(t) = z(t) = y(t) for a.e. t € C. Further, for every w with
Io(w) < oo, |w(t)] < c(p) for ae. t € T. Since p(c(¢)) > 0, u(Bp) — 0 as n — oo;
$0

[ otw®)du < ole(@)n(Ba) ~ 0 as n— o

uniformly on {w € L¥(u) : I,(w) < oo}.
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By the convexity of I, and the inequality I,(z) < 1, we infer that I,(Z) < 1 and
I,(y) < 1. Thus, there exists 0 < 3 < 1 such that

max{I,(Z),I,(7)} + 26 < 1.

Next, fix n > 6/e with p(c(p))u(Bn) < . Since ||Txa,lle < 1,1,(ATxa4,,) < 1 for
some A > 1. In virtue of the Lebesgue dominated convergence theorem, we can find
v > 1 such that

Io(vTxa,) < 1p(Txa,) + 5

and, analogously,
1,(vxa,) < 1,(Uxa,) + 6

Let § = min{(l—%)ﬁ, &} and take an arbitrary w € B(L¥(u)) with [|w—z]|, < 0.
Then ||%(w —2)||p <B<1,s0 Isp(%(w —2)) < B, for I,(x) < |||, for every
x € B(L¥(p)). Finally, let

- w(t) if teCUBy,
u(t) = { T(t) + w(t) — 2(t) if te€ Ap;

[ w(®) if te CUBy,
olt) = { 7(t) +w(t) — 2(t) if te€ Ay

We claim that ||u — z||, < e and ||v —y||, < e. Since Z(t) = 2(t) for a.e. t € C,
Icp(5_1(“ —T)xc) = Icp(5_1(w —z)xc) < Lp(é_l(w —z2)) <L

s0 [[(u — T)ycllp < 0 < €/6. Further, since %(T(t) +7(t)) = 2(t) for a.e. t €T,
[Z(t) — z(t)] < % -¢(p) for a.e. t € By,. Thus

I3 = )xm,) = I, (56w = 2, ) + 567G~ Ts,)) <

2
< 316w = 2)) + 5o (i) <
< 2157 (w = 2) + selel@)i(Ba) < (14 5) < 1

so [|[(u —T)xB, llp < e/3. Therefore

lu =zl < flu=Tllp + llz = Z[lp <
< (u=2)xclle + 1w =T)xB, o + (0 = 2)xa,lle + l2 = Zllp <e.

Analogously, |lv — 7| < e.
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To prove the stability of z, we should show that u,v € B(L¥(u)). We have

Io(w) = L) + Lo(wxp,) + Igo(%(mm +1= D)5 w=2)a,)
< P(CleDA(O) + olelDBa) + = - Tp(0xa,) + (1= ) T (w = 2)xa,)

< Io(wxo) + 5+ (I¢<EXAH> +8) + (1= ) LT (w = 2)
<I,(T)+26 < 1.

(=) Let us suppose that none of the conditions (i) = (v) is satisfied. Let n € N
be any number such that |[zx4, | = 1 if ¢(p) < oo and ¢(c(p)) < oo, and put
n =1, A, = T in the other case.

By the lower semicontinuity of I, and in virtue of Proposition 2, we can find

e > 0,2,y € B(L¥(p)) with %(:v +y) = z and a set E C A, of positive measure
such that [|z2x g/, < 1 and

21,(2xE) < Ip(uxg) + Ip(vXE)

for every u,v € B(L¥(u)) with [ju — z[|, < € and ||v —yl, < e.

Let 0 < § < 2/n and fix k € N with & > 26~! > n. Since I,(2) < 1, ||lzxElle < 1
and [[2x4,lle = 1, we have Ip(Azx4,\g) = oo for every A > 1. Let us take, if
c(¢) < oo and p(c(p)) < oo, any countable covering (£;)72; of the set A, \ E
consisting of pairwise disjoint sets E; C Ay, \ F of positive and finite measure and

put a; = ¢~ 1(i),
E,={teT\E:a;—1<|z(t)| <a;}, i=1,2,...,

in the other cases (since I,(z) < 1, u(E;) < oo for each i € N). Define

m

h(m):ZIw((H )2XE;) Z Io(2xE,), m=0,1,2,...
=1 i=m-+1

(with the usual convention ) 5 = 0). We have

(e(p)) < oo for t € Ap, if c(p) < 00, 9(c(p)) < 00,
o((1+ %)z(t)) <9 p(1+ %)ai) <oo for te€E; if ¢(p)=o00 or
c(p) < oo and p(c(p)) = .
Thus h(m) < oo for every m € N. Further, h(m) — oo as m — oo, since
Io((1+ §)2xa,\B) = 00
Let p = max{m > 0 : h(m) < 1} and let 0 < s < k™! be such a number that
I,(w) = 1, where
1+ %)z(t) for te U, Ei,
1+ s)z(t) for t € Epyq,
(

t) otherwise.

o~ o~

w(t) =

z
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Suppose that there are u,v € B(L¥(u)) such that ||u — ||, <e,||v —y|p < € and
%(u + v) = w. Then, by the convexity of ¢, we have

pla+n) > ¢l (a)n+ p(a)

for every nn € R and |a| < ¢(¢), where cp’_i_ denotes the right hand side derivative
of ¢. Therefore

2> I(u) + I(v) =
= Ip(uxp) + Lp(vxp) + Tp(w +u — vl g) + Lp(fw + v — wlxp ) >

> 2I,(2xE) + 2Lp(wxp\E) + /T\E ¢l (w(t)[u(t) + o(t) — 2w(t)] du =
=2I,(w) = 2.
This contradiction ends the proof of the theorem. O

Let {en : m € N}, N C N, be the set of all atoms of 7" and let r > 1. We shall
say that a function ¢ satisfies the condition A2 (on T') — ¢ € AY in short — if

- there exist ag > 0 and ¢ > 1 such that 0 < ¢(ag) < co and
¢(ra) < cp(a) for every |al < ao,

provided the atomless part of T is of positive measure;
- there exist ag > 0,b > 0,¢ > 1 and a nonnegative sequence (dy) such that
Yo dn < 00,0 < p(ap) < oo and

Sp(ra)ﬂ(en) < C@(a)ﬂ(en) + dp,

for every |a| < ag with ¢(a)u(en) < b and every n € N provided p is purely
atomic.

Ifpe A? for some r > 1 on the atomless part of T which is of positive measure,
then, evidently, ¢ € AQ on the whole set T'. Further, if the measure of the atomless
part of T is either infinite or equal to zero and ¢ € A, for some r > 1, then ¢ € A?.
Thus ¢ € A for some r > 1 provided dim L¥ (1) < oo and L#(u) is not isometric
to L (w).

If o € A for some r > 1, then, for any number o’ € (a(p),c(¢)), we can
find 1 < ' < c(yp)/a’ such that ¢ € Al with o instead of a (consider r’ =
min{r, ¢(¢)/a’} > 1, ¢ = max{c, ¢(r'a’)/p(ag)} and b’ = b). Therefore, if p € Al
for some r > 1 and ||z]|co < ¢(y), then

|zllp =1 = I,(x) = 1.

Note that ¢ € AY for some r > 1 iff ¢ € Ag provided ¢ takes only finite values.
Before we present a theorem on stability of the unit ball in L#(u), we shall prove
an auxiliary lemma.
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Lemma 4. Let M, S be the purely atomic and atomless part of T', respectively. If
¢ does not satisfy the condition AQ for every r > 1 on M (respectively on S) and
w(M) = oo (respectively pu(S) = oo), then there exists a sequence (x}) of simple
functions with disjoint supports such that

1 1
lzklloo < % ~min{1,c(p)}, Io(xx) <27F and I,((1+ z)zk) 21

for every k > 1. Thus, the point x =), x), € B(L¥(p)) is not stable.

PROOF: (a) Assume that ¢ does not satisfy the condition AY for any » > 1 on S
and p(S) = co. Take, for every k € N,

1
ak:%

1

' min{lac(@)}v CL = 2k+15 TE = 1+ E ’
Then we can find a sequence (i) of positive numbers such that 0 < 85 < a; and
o((1 + %)ﬁk) > 2F+1p(8,). Further, we can choose a sequence (T},) of pairwise
disjoint measurable sets with ¢(8;)u(T;) = 1/2FF! for every k € N. Then the

sequence 3, = [T, , k € N, possesses all the required properties.
(b) Now, let u(M) = oo and assume that ¢ does not satisfy the condition A?
for any > 1 on M = {ey, : n € N}. Take ¢, 7 as above and put ai = ﬁ .

min{1,c(p)} and by = 1/2FF1 for k € N. Further, let

an(k) := sup{p(rpa)ulen) : 0 < a < ag, p(a)u(en) < by, p(rra) > cpp(a)}

for n, k € N. Then, for every k,n € N, we have 0 < ay (k) < co and

p(rra)ulen) < cpp(a)ulen) + an(k)
for every |a| < aj with (a)u(en) < by. Since ¢ ¢ Agk, Y an(k) = oo for every
k € N. Thus we can find a sequence (N}) of pairwise disjoint subsets of N such
that an (k) > 0 for every n € Ny and 3°, oy, an(k) > 2 for every k € N. By the
definition of an(k), for every k € N and n € Ni, we can find a number Gy (k) such
that

0 < Bn(k) < ag, 9(Bn(k))plen) < br, @(rifn(k)) > cpe(Bn(k))

and
p(reBn(k))plen) > an(k) — 27"
Thus 3, cn, ¢(rkBn(k))p(en) > 1 for every k € N. Define, for k € N,

ny = max{p € N : Z @(rgfn(k))plen) <1},
nENE,n<p

myg = min{p € Ny : p > ni} and

= (Bn(B)XNyn{1,...mp} (1)) n=1 -
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Then [[zg[lcc < ag,

Ip(zp) = Y ¢(Bulk))nlen) + @ (B (K)nlem,) <

neENg,nng
1 1 1
< Z — - o(rBn(k))plen) +bp < — +bp =
Ck Ck 2
nENE,n<ng
and .
(U D)= S ekBalk)en) > 1

neNE,nmyg

(c) Let x =3 . Obviously, ||lz[lp =1 and I,(z) < 1. Further, since [|z]o <
2 min{l,c(p)}, An = {t € T : [z(t)| < (1 - L)e(p)} = T for every n > 2. Thus

lzxa, |l = ||lz|lp =1 for every n > 2, so, by virtue of Theorem 3, x is not stable.
O

Theorem 5. The unit ball of the Orlicz space L¥(u) is stable if and only if at least
one of the following conditions is satisfied:
(i) Lﬂp( ) is finite dimensional;
(ii) L¥(p) is isometric to L (u);
(iii) ¢ satisfies the condition A, for some r > 1;

(iv) ¢ satisfies the condition A? for somer > 1 provided () < oo and p(c(y)) <
OO,

(v) ¢ satisfies the condition A for some r > 1 on the purely atomic part of T
provided ¢(p) < 00, p(c(p)) < oo and the measure of the atomless part of T’
is finite;

(vi) e(p) < 00, p(c(p)) < oo and p(T) < oo.

PRrROOF: (<) The sufficiency of (i) and (ii) is obvious. If ¢ € A, for some r > 1 and
c(p) = oo, then B(L¥(u)) is stable by virtue of the Suarez—Granero theorem [12].

Let c(p) < 00, p(c(p)) = 0o and ¢ € A, for some r > 1. Then p must be purely
atomic and inf,cn p(en) > b/p(c(@)r™1), where {e, : n € N C N} is the set of
atoms of T. Then L?(u) C ¢! C g, 50 ||7]oo < c(p) for every I,(x) < co. Further,
¢ € A, thus I,(z) = 1 iff ||z]|, = 1, so B(L¥?()) is stable.

Let c(¢) < 00,¢(c(p)) < oo. Fix any x with ||z[|, = 1. Then ||z]|cc < c(yp).
If ||z]loc < ¢(¢) and one of the conditions (iv), (v), (vi) is satisfied, then, by the
Lebesgue dominated convergence theorem, I,(x) = 1, so x is stable (if Ty C T
is such a set that u(Tp) < oo, then I,(rexr) < @©(r||z|oo)u(To) < oo, where

1<r< ())

[EZES
If |z||loo = c(y), then ||znlloc < ||z]loc = c(p) for every n > 2, where z, =
EX {1 (t) | <(1— L )e(p)} Thus I,(xn) < Ip(x) = 1, and, by assumptions, I, (rz,) <

oo for some 7 > 1, so ||zn|l, < 1 for every n > 2, hence, by Theorem 3, B(L¥ (1))
is stable.

(=) Assume that none of the conditions (i) = (vi) is satisfied.
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Let ¢(¢) = o0 or ¢(c(p)) = oo. Then ¢ ¢ A, for any r > 1, so there exists
x € L¥(u) such that ||zf|, = 1, but I,(x) < 1 (cf. [8], [16, Lemma 3.2]). By
Theorem 3, B(L¥(u)) is not stable.

Let ¢(p) < 00, 9(c(p)) < co. Then p(T) = co. Let M, S be the purely atomic
and atomless parts of T, respectively. If ;(S) < oo, then, by Lemma 4, B(L¥(u)) is
not stable for ¢ ¢ A on M for every r > 1. Finally, if (M) < oo, then u(S) = oo
and ¢ ¢ A% on S for every 7 > 1, so, once again, by Lemma 4, B(L¥(u)) is not
stable and the proof is finished. O

It is easy to observe that the theorem on stability of the unit ball in Orlicz
sequence spaces (u(en) = 1 for every n € N) presented in [14] can be deduced from
Theorem 5 (note that ¢ € A, for some (every) r > 1 iff ¢ € AQ for some (every)
r > 1iff ¢ € Ay in that case). In the case of an atomless measure we have the
following

Corollary 6. Let i1 be an atomless measure. Then the unit ball of the Orlicz space

L¥#(p) is stable if and only if one of the following conditions is satisfied:

(i) L¥(p) is isometric to L™ (u);

(ii) e(p) = oo and @ satisfies the condition Ay;

(iii) c(p) < oo, p(c(p)) < oo and either u(T) < oo or ¢ satisfies the condition
A for some r > 1.

Corollary 7. If the function ¢ takes only finite values, then the unit ball of the
Orlicz space L¥(u) is stable if and only if either L¥(u) is finite dimensional or ¢
satisfies the condition As.

4. Topological structure of stable points in the unit sphere.

It is evident that the set of stable points of B(L¥(u)) is dense in B(L¥(u)). We
shall show that the similar result is valid if we replace “the unit ball” by “the unit
sphere” S(L¥(u)); more precisely, the set of all stable points of B(L¥(x)) with norm
one (it will be denoted by Stab) is dense in S(L%(u)).

Proposition 8. Let G, = {z € L¥(u) : ||2]|oc > (1 — %) ~c(p)} if ¢(p) < 0o and
ole(p)) < 00; Gy, = 0 otherwise; n = 1,2,... . Then, for every n sufficiently large,
the set S(L¥(w)) \ (StabUGYy,) is of the first Baire category in S(L¥(u)) \ Gy, with
the topology induced from L¥(p).

Note. If ¢(y) < oo, then L¥ () C L°°(u) and, by the closed graph theorem, the
corresponding identity map is continuous. Thus the sets G, are open in L¥(u).

PROOF: In virtue of Theorem 5, we can assume that L¥(u) is neither finite dimen-
sional nor isometric to L% (u). Thus ¢(c(p)) > 0. Let ¢ > 2 be any number such
that gp(g% -¢(p)) > 0. Let us fix n > ¢q. Then

S(L#(1)) \ (StabUG) = G Hp,
m=1
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where Hy, = {x ¢ Gp : Ip(z) <1 — %, llzl|o =1}, m =1,2,.... Since I, is lower
semicontinuous, each H,, is closed in S(L¥(u)) \ Grn. Suppose that (J,,, Hy, is not
of the first Baire category, i.e. int Hy, # () for some (fixed from now on) m € N.
Then there exists z € Hy, and an open neighborhood U C S(L?(u)) \ Gy, of z such
that 1

sup I,(z) <1-— —.

zeU v m

We claim that I,(Azxg) = oo for every A > 1, where

n—1

H={teT:|z(t)] <

< ~c(p)} if elp) < oo and @(c(p)) < oo,

and H = T otherwise. If H = T, then there is nothing to prove. Assume that
c(p) < 00,¢(c(p)) < oo and suppose that I,(Azxp) < oo for some A > 1. Let
1< N <min{\, (1+ 1)}. Since |2(t)] < (1 - L)e(p) for ae. t € T, we have

1
I, (N'2) < I(\axm) + Tp((1+ —)2x\mr) <
< Ip(Aexm) + Klp((zxp\ 1) < 00,

where

n—1

K=w@@ﬂﬂn+r

c(p)) < oo

Hence ||z||, < 1 — a contradiction. Consequently, the set H can neither be empty
nor consist of a finite number of atoms.

Let us choose a countable covering (T7,)72; of H consisting of pairwise disjoint
sets Ty, C H of positive and finite measure. In an analogous way as in the proof of
Proposition 2, step 2°), for a given k > n, we can find the numbers p;, € NU {0}
and 0 < s < % such that I,(x) = 1, where

1
o = (L4 g, + L+ ST, 0+ 2T,

and T}, = Ule T;. Further, if ¢(p) < oo and ¢(c(yp)) < oo,

()] < (4 DI < (4 1) - o) = (1= 1) -elg)

n n—l—l. n

for every ¢ € H. Therefore, in any case, z € S(L¥(u)) \ Gy, for every k > n.
Moreover, for every A > 1 and k > max{n, A}, we have

Pk
A A
i=1

ie., ||z —ak|lp — 0. Thus 2 € U, so I,(x) < 1— % for large k — a contradiction.
O
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Theorem 9. The set Stab is dense in S(L¥(p)).

PROOF: If ¢(p) = oo or ¢(¢) < 0o but ¢(c(¢)) = oo, the statement is an immediate
consequence of Proposition 8 and the Baire category theorem ([2]).

Assume that c(p) < 00,¢(c(p)) < oo and let z € S(L¥(w)) \ Stab. In virtue
of Theorem 3, I,(z) < 1 and there exists p € N such that Ip(Azxp\p, ) = oo for
every A > 1 and n > p, where Dy, = {t € T : |z(t)| > (1 — %)-c(gﬁ)}, n=23,....
Evidently

1

P((1 = S)e())u(Dn) < Lp(x) < 1,

SO SUPy,~m W(Dn) < oo for sufficiently large m € N. Define

1
@n = 2X1\D, + (1= ~)e(p) -sgnz - xp,, n=2.

Then, for every A > 0 and n > max{2, A\, m},

Io(Mz — ) = Lp(Mz — (1 = =)c(p) -sgnz) - xp,) <
< w(% () (Dy) < % ~p(c(yp)) ' sup #(Dn) ——0,

ie., || —xnllp, — 0. Further, |z, (t)] < (1 - %)C(gp) for a.e. t € T, ie., zp ¢ Gy, for
n > 2, where Gy,’s denote the sets defined in Proposition 8. Since I, ()‘anT\Dn) =
oo for every A > 1 and n > p, ||zn||p = 1; 50 2y € S(L¥ (1)) \ Gy, for n > p. But, for
large n, Stab \Gy, is dense in S(L¥ (1)) \ G, by Proposition 8 and the Baire category
theorem, so we can find a sequence (yn),yn € Stab such that ||y, — x|, — 0 and
the proof is completed.

Corollary 10. If [0,00) C ¢(R), then Stab is a dense G subset of S(L¥(u)).
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