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Časopis pro pěstování matematiky, roč. 97 (1972), Praha 

FREDHOLM ALTERNATIVE FOR NONLINEAR OPERATORS 
AND APPLICATIONS TO PARTIAL DIFFERENTIAL 

EQUATIONS AND INTEGRAL EQUATIONS 

JINDRICH NECAS, Praha*) 

(Received April 15, 1970) 

1. Introduction. The problem of solving a nonlinear boundary value problem or 
an integral equation can be reduced often to the following abstract one: find a solu
tion u of Tu = /, where Tis a mapping from a real, reflexive Banach space B to its 
dual B*. 

Example 1. Let fibea bounded domain with Lipschitz boundary 8Q and let 
«*(*> £o> £i> •••> £*)> * = 0, 1, ..., n, be continuous functions in Q x Rn+U satisfying 
growth conditions 

(i.i) Mx*t)\£<i + \t\r-l> 

where 1 < m < oo. Let /• eLm(Q)9 1/m' + l/m = 1, i == 0, ..., n. By Wm
l)(Q) we 

denote the well-known Sobolev space of real Lm functions whose first derivatives are 
also Lm functions. Wm

l\Q) is a Banach space with the norm ||M||jrm(i) = (J.Q(|M|m + 
n 

+ £ \duldxi\
m)dx)lfm and is separable. Wm\Q) is also reflexive as the closed sub-

.=-1 

space of [Lm]w+1. Let Wm\Q) be the closure of D(Q), the space of infinitely differen-
tiable functions with compact support, in the space Wm

l\Q). We have to find u e 
e Wm

l\Q) such that for any v e W£\Q) 

(L2) I \i^ai(x>u>TL>'->T')+ pflo(̂ «»r 'ri l^ = 

JnV-idXi \ dxt dxj \ dxt dxj/ 
= [vfQdx- f t^-fidx. 

JQ Jni=idXi 

*) Lecture held on the Chicago area applied mathematics seminar. 
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The function u is called weak solution of the differential equation 

/11\ V d ( ( du d u \ \ ^ ( 8u 8 u \ r±$df* 
i - i5x i \ \ exx exjj \ exi exj ^^ext 

in Q9 satisfying on the boundary the condition u = 0. 
Denoting by (w*9 u) the pairing between B* and B9 we can define an operator T: 

: B -» B*9 putting 

/ ^ \ « f /£> / 3" du\ di> / du du\ \ , 
(7i*,i>) = 2-fl« x ' u ' 7 ~ » ' ' ' ' r r + flo x ' u ' 7 ~ ' ' " ' r r d x ' 

JflV-i \ foi ex j ex t \ exx exj j 
n 

Because jQf0v dx — j n Y,f^vl8xi) dx ^ (/> v)> ^ e equation (1.2) is reduced to the 

problem of solving the equation Tu = f. 

Example 2. Let us consider the Hammerstein's integral equation 

(1.4) u(x) - A f X(x, y)f(y9 u(y)) dy = w(x) , 
JM 

where the solution is supposed in L2(M)9 M being a compact subset of Rn9 w e L2(M)9 

f(y9 u) is a continuous function on M x Ri9 satisfying the growth condition 
\f(y9 u)\ g c(l + |u|). We suppose jM JM K2(x, y) dx dy < co. If (Tu) (x) = u(x) -
- k jM K(x9 y)f(y, u(y)) dy9 then T: L2(M) -> L2(M) and the problem is reduced to 
the solution of Tu = w. 

2. Borsuk type theorem. A mapping Tis said to be bounded if the image of bounded 
set is bounded and it is said to be demicontinuous, if from un-+ u (strong con
vergence) follows Tun -> Tu (weak convergence). 

Theorem 1. Let T: B -> B*9 where B is a reflexive space, be a bounded, demi
continuous mapping. Let Tt(u) = T(u) - t T(-u)forQ ^ t ^ 1. Let for 0 <L t = 1, 
the condition (S) be satisfied: 

(2.1) if un^u and (Tt(un) - T,(u), un - u) -+ 0, 

fften u., -> u, andforfeB* the condition 

(2.2) * Ttu - (1 - j)f * 0 for ||u|| = K > 0, 0 = f = 1 . 

Then there exists a solution of Tu =- f. 
Let us remark first that the above solution is unique if, for example, the operator T 

is strictly monotone: u + v=> (7ty r- Tv9 u — v) > 0. 
Theorems as above are based on the concept of monotone operators, and there is 

a large amount of literature on this subject, compare, for example, M. I. VISIK [11], 
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F. E. BROWDER [1], J. LERAY, J. L. LIONS [6], G. J. MINTY [7]. The concept using 
Borsuk's theorem was recently used in the paper of D. G. DE FIGUEIREDO, CH. P. 
GUPTA [3] and elsewhere. 

The main ideas of the proof of Theorem 1: First, if B = Rn, then the degree 
(Tt(u), B(0, R), 0) is an odd integer by Borsuk's theorem, hence by homotopy, this 
is true for T(u) -f, hence, there exists ||M[| < R such that Tu = f. If F c B is 
a finite dimensional subspace of B and \//F is the injection of T -+ B, ej/* being its 
dual mapping, then for TF = ^*T\j/F, it can be proved by contradiction existence of 
a F such that if F' 3 F, then TF,(u) - tTF{-u) - (1 - t) $%• f * 0 for ||tt|| = R, 
u e F', 0 <; t ^ 1. Hence for every F' => F, there exists uF. e F' such that 7r'ttF' = 
= i//tff Let us put MF, = {ttF-1 F" => F'}. The set of MF, has finite intersection pro
perty. If MF, is the closure in the weak topology, then f\MF> 3 w. If w, u e F' for F' 

F' 

such chosen, then there exists un e MF>, un-* u and because of lim (Tun — Tu, 
n-*ao 

« . -« ) -= , i m C7"-' « • - « ) - = -in- (f « » - « ) = o» ((r«». « » - « ) = ( /»«»- «) 
n-*oo n-»oo 

follows from the definition of TF) the condition (2.1) implies un -• u, what, in virtue 
of the demicontinuity of T, gives the result. We have clearly: 

Consequence 1. If the operator Tis coercive: 

lim - ^ J ^ = oo , then T(B) = B* . 
ll«ll-«> H 

This is because (Ttu, u) ^ C(||M||) ||M||, with c(s) -> oo for s -> oo. 

Consequence 2. If the conditions of theorem 1 are satisfied and Tis odd: T(—u) = 
= -T(tt) and if Tis weakly coercive: lim ||Ttt|| = oo, then T(B) = £*. 

l|«||-ao 
Let us consider the following class of operators: first if for x > 0 and every t > 0: 

A(ftt) = t* A(u), then A is called x-homogeneous. 
An operator S is asymptotically zero if for x > 0 lim ||Stt||/||tt||* = 0. 

H«|| —00 

We have the following Fredholm alternative: 

Theorem 2. Let T = A + S, where A is demicontinuous, x-homogeneous, satisfies 
the condition (S) (i.e. if un -* and (A(un) — A(u), un — u) -> 0, f/ien «„ -• tt), 
5 is demicontinuous, asymptotically zero (with the same x as for A) and Tis bounded 
odd and satisfies the condition (S). Then the range of T is all of B* if Au = 0 => 
=> u = 0. In this case, for every soluti'on, 

(-•3) H M i + ii/m-
/ / (2.3) is true for every solution, then Au = 0 => u — 0. 
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Theorems of this type are recent. It seems the first paper is due to S. I. POCHO2;AJEV 

[10] and to the author [8]. For further results, compare F. E. BROWDER [2] and the 
forthcoming pape^ of J. NECAS [9]; compare also M. KUCERA [5]. 

Proof of Theorem 2: 

(i) If (2.3) is true and there exists M0 4= 0 such that ,4M0 = 0, then for u — tu0: 

ы-«ç-+--й->ь. 
which is a contradiction. 

(ii) Let AIM = 0 => M = 0. Then (2.3) is true: if not, there exists a sequence ||Mn|[ -> 
-> oo such that 

(2.4) * ||M,,(|* > n(l + [|TMW||) and putting vn = -p-, 

IN 
we can suppose vn~* v and we obtain from (2.4) Avn -> 0 and using (S) condition: 
vn -* v, hence ||v|| = 1 and Av = 0 which is a contradiction, 

(iii) (2.3) implies (2.2), and (2.1) is satisfied because Tt(u) = (1 + t) T(u). 

3. Back to the applications. Let us remark first that it is only a question of intro
ducing enough of indices to treat general systems instead of one partial differential 
equation as we will do; there is no essential difference. 

I) We consider first the problem: 

t, <x £ 3 / du\ , / du du\ r t . " df 
(3-1) - Z — a l 7— -Aa 0 X , M , - - , . . . , — =f0(x) + I ~ ^ 

i,j = ldXi\ OXjJ \ OX1 OXj i = 10Xi 
n 

with dij € L^Q), £ atjtitj = c|£|2. Let us suppose 

(3.2) 
t »=o 

á*)[(Itf)1/ а + -] 

with c(t) -> 0 for t -+ oo, frf e L^Q). The condition (3.2) implies immediately that 

Ru = a0(x, M, dujdxl9..., dujdxn) - £ bt{x) du\dxx - *b0(x) u satisfies the condition 
»--i 

lim IIKMII^/IIMII^I) = 0. Supposing a0(x, -£ ) = -a0(x, £) and defining 
IMI-oo 

(Au, t>) = J a ^ ^ ^ d x , (Su, v) =* -A a0 ( x, M,--^-, ..., - ^ U d x , 
Jn-,1=i dxjdXi Jn \ ™i °xj 

we obtain in virtue of the fact the imbedding W[l)(Q) -• L2(Q) is completely conti
nuous, that Su is a completely continuous operator from W[X) -> (^2l))*- Because A 
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and S above defined satisfy with x = 1 the conditions of the theorem 2, this altogether 
gives by theorem 2 this result: 

For every f,. e L2(Q), i = 0,..., n, there exists a solution of (3.1) with u = 0 on 8Q 
n 

and for every solution, we have ||W||^2(D -S C(\ + ||fo||L2 + Z H/illiJ i f a n d o n l y 

if A is not an eigenvalue for the linear problem l=zl 

- i ~ U j^-d (H*) T- + fc"Wu) - ° • u e *Hfl) -
i,j=l OXi \ OX J i = l \ CXi / 

II) If we consider a nonlinear problem with m =f= 2, then we suppose: 

(3.3) -%£-*(*.€) šcдоa + tö""1). í = o,...,п, 

where -4j(x, ^) satisfy the conditions (1.1) and c((t) -> 0 for f -> oo. Let -4|(JC, ^) and 
flf(x, 5) be odd in £ and Af(x, f£) = ^"M^x, {), f > 0. We shall suppose for 
at(x, 0 and At(x, £) the conditions (we write them only for A,): if \£l9..., £,.] + 
* [ « , . . . , « ] then 

(3.4) J (A,<x, {0, {,.,..., {,) - A{x, U « , . . . , # ) ({, - «) > 0 
»=i 

and 

(3.5) £ -4£(x, dj0, tl9..., {.) {. = Cl t |{J- - c2|£0|
w • 

i = l i = l 

For to apply theorem 2, we can easily verify (for details compare J. LERAY, J. L. 
LIONS [6]) the hypothesis eventually with the exception of the condition (S): for to 
see this, let uk -* u in Wm\Q). We have first by the complete continuity of the imbed
ding Wm\Q) -+ Lm(Q): uk-+u in Lm(Q). Choosing a subsequence, if necessary, 
still noted uk, we have uk(x) -• u(x) almost everywhere. By hypothesis, 

lim J £ (ai(x9uk9^,...,^)-ai(x,u,^9...9^)) 
*-*J.o«--A V d*i SxJ \ Sxi SxJJ 

/du* __ du\ dx C / / M at^ (fofc\ fl / w &^ _3u\\ 

\5xf dx,/ J o \ ° \ k'dx1""9dxJ °\ 'dx^'^dxj/ 

(uk — M) dx = 0. 

The second member tends to zero, hence also the first, but in virtue of (3.4) putting 

AW = I (<M *> «» J**,.... 7^ ) - «i (*> w*, - - ^ , . . . , - ^ ) ( T ^ ^ 7^))» 
»--i\ \ 5xt dxj \ dxt dxJ\dXi 8xJ/ 
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f(y, tu) - a(y) u ^ c(t) (1 + \u\) with c(t) -+ 0 

we have/fc(x) ^ 0 and fafk(x) dx -• 0. If necessary, for a subsequence, still noted fk, 
fk(x) -* 0 almost everywhere. This implies (dukjdx^ (x) -*> (dujdx^) (x) almost 

everywhere. But (3.5) gives uniform continuity of the integrals J M £ \dukjdxi\m dx 

with respect to k. This implies dukldx( -* dujdxt in Lm(-2) for the original sequence. 
Hence we obtain: the conditions (1.1), (3.3)—(3.5) being satisfied, there exists 

a solution u e Wm(Q) of (1.2), and every solution is such that 

(3-6) \\u\\WmW £ c(l + t \\ft\\l!l'-l)) 
f - 0 

if and only if u — 0 

is the only solution of (1.2) for/f -= 0 and the coefficients At. 
Ill) As far as the integral equation (1.4), although there is a lot of possible general

izations, we shall consider the condition: 

(3.7) i 

for t -* oo and a e L00(Af). The operators from L2(M) -»• L2(M) denned by 

(3.8) f K(x, y)f(y, u(y)) dy, [ K(x, y) a(y) u(y) dy 
JM JM 

are completely continuous. If we have 

(3.9) /(*-«)= -f(y,u), 

we can immediately apply Theorem 2. But it is easy to see that we can immediately 
apply Theorem 1 in virtue of the complete continuity of (3.8) without (3.9). We 
obtain: 

The equation (1.4) provided (3.7) has a solution for evê y w e L2(M) and for every 
solution holds ||«||L2 g c(l + ||w||L2) if and only if A is not an eigenvalue for the 
linear equation 

u(x)-xt K(x,y)a(y)u(y)dy = 0. 
JM 

This result is very close to the corresponding result of M. A. KRASNOSELSKU [4]. 
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