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Časopis pro pestování matematiky, roč. 97 (1972), Praha 

UNIFORM EXTENSION OF LINEAR FUNCTIONALS 

VACLAV ZIZLER, Praha 

(Received November 26, 1970) 

We work in real Banach spaces. If X is a Banach space, xn, xeX9 then x„ -> x or 
xn -^ x means the norm of the weak convergence of the sequence {xn} to x, respective
ly. Similarly f„ —• ffor the pointwise convergence in X* (the dual of X). For r > 0, 
Kr = {xeX; \\x\\ ^ r}9 Sr = { x e l ; ||x|| = r}. Analogously K*9 S* in X*. The 
reals will be denoted by R. the positive integers by N. For a closed linear subspace P 
of a Banach space X9 X\P denotes the quotient space and the codimension of P 
(codim P) is the dimension of K/P(dim XJP). For a linear subspace P a X9 P1 is 
the annihilator (or polar) of P at X*. For a linear subspace P c: X9feX*9 ||f | |p = 
= sup |f(x)|. For M a X, M means the norm closure of M in X. If K is a convex 

KinP 

subset of K, ext K denotes the set of all extreme points of K. For a topological space S9 

C(S) denotes the Banach space of all real valued continuous bounded functions on S 
with the supremum norm. By <x, y} we mean the closed line segment with the end 
points x, y e X. 

Definition 1. Let X be a real Banach space, P c l a linear subspace of X. We 
call X uniformly rotund (weakly uniformly rotund) along P if the following impli
cation is valid: 

if x„, yn e Sl9 xn - yn e P, ||xn + yn\\ -> 2, then xn - yn -> 0 (x„ - yn -^ 0). 
Similarly for the case of X* and the weak * uniform rotundity along P c X*. 

Lemma l.IfPczX is a linear subspace of a real Banach space X9 then the fol
lowing properties are equivalent: 

(i) X is uniformly rotund (weakly uniformly rotund) along P. 
(ii) If xn9 yn e Sl9 inf \\txn + (1 - t) yn\\ -> 1, xn - yn e P, then xn - yn -> 0 

re<o,i> 

(xn-yn^o). 
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(iii) 7/xn, yn e K, ||l(xn + yn)\\ -> 1, xn - yn e P, then xn - yn -> 0 (xn - yn -^ 0). 
(iv) Ifxm yn e X, {xn} bounded, xn - yn e P, 2(\\xn\\

2 + ||yn||2) - ||xn + yn||2 -+ 0, 
then xn - yn -> 0 (x„ - yn ^ 0). 

Proof. It involves only some computations and is quite similar to that in [6]. 

Proposition 1. Suppose P c X is a finite dimensional subspace of a Banach 
space X. Then X is uniformly rotund along P iffX is uniformly rotund along each 
one dimensional subspace of P. 

Proof. One part of the equivalence is evident. Suppose X is not unifoimly rotund 
along P. Then by (iv) of Lemma 1 there exist {xn} bounded, yn e X, xn — yn e P, 
2 ( W | 2 + Hynll2) - I*. + yn||2 - 0, ||xn - yn|| = e > 0 for some e > 0. Suppose 
without a loss of generality wn = xn — yn -> w e P, w + 0, for {yn} is also bounded 
(see for example [6]), and 2(||yn||2 + \\yn + w||2) - \\2yn + w||2 = 2(||yn||2 + 
+ b . + ^n||2) - ||2yn + wn||

2 + 2(||j,„ + w||2 - \\yn + wn||
2) + \\2yn + wn||

2 -
- \\2yn + w||2. However, \\\yn + w||2 - \\yn + wn||2| = \(\\yn + w|| - ||yn + wn||) . 
•(lyn + HI + ||y» + wn||)| ^ ||wn - w|| . K whereK is some constant, since {yn+ wn) 
is a bounded sequence. Similarly for the term ||2yn + wn||

2 — [|2yn + w||2. Therefore 
2 ( l ^ l | 2 + b» + w l 2 ) "" l l 2 ^ + wH2 "* ° ' {yn} bounded. Thus X is not uniformly 
rotund along the subspace generated by w. 

Proposition 2. Suppose P c= X is a linear subspace of a Banach space X. Then X 
is (weakly) uniformly rotund along P iff X is (weakly) uniformly rotund along P. 

Proof. One part of the equivalence is evident. Suppose X is not weakly uniformly 
rotund along P. Then there exists {xn} c= X, {xn} bounded, feS*cz X*, wneP, 
|/(wn)| = s for some s > 0 such that 2(||xn||2 + ||xn + wn||

2) - ||2xn + wn||
2 -> 0. 

We may choose for neN, wneP such that ||wn — wn|| = l/n and therefore wn — 
- H>n->0. Then again {wn} is bounded and 2(||xn||2 + ||xn + wn||

2) - ||2xn + 
+ H>n||

2 = 2(||xn||2 +| |xn + wn||
2) - ||2xn + wn||

2 + 2(||xn + wnf - ||xn + wn||
2) + 

+ ||2xn + wn||
2 - ||2xn + w„\\2. |||xn + >vn||

2 - ||xn - wn||2| = |(||xn + wn\\ + ||xn + 
+ wn\\) (\\xn + wn\\ ~ ||^II + w«||)|- The ^^ t e r m o n ^ e right hand side of the last 
equality is bounded. The second one is not greater than ||wn — v^nj|, which converges 
to zero. Furthermore, f(wn — wn) -+ 0. Thus for n = n0 we would have |/(wn)| = 

= e/2 > 0. The other parts of the statement are derived similarly. 

In the following, #(x, y) will denote ||x — y|| in X, and for M c X, Q(X, M) = 
= inf Q(X, y). 

yeM 

Definition 2. A linear subspace P of a Banach space X is said to be a uniformly 
Haar subspace (a weakly uniformly Haar subspace) if the following implication is 
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valid: if {xn} is bounded in X, {yn} cz P, {zn} c P, Q(xn, P) - Q(XH, yn) - • 0, 
Q(X„, P) - Q(XH, zn) -+ 0, then yn - zn -» 0 (yw - zn ^ 0). Similarly for P cz X* 

and the w*-topology. 

Remarks . Evidently, these conditions are not weaker than the Haar (i.e. Che-
byshev) property of the closed P in a reflexive space X, and coincide with it if P is 
a subspace of a finite dimensional space X. If X is a uniformly rotund ( = uniformly 
convex) space, then it is uniformly rotund along each subspace. Moreover, the space 
C<0, 1> with the equivalent norm V(||x|c<o,i> + ||*||L2<O,I>) provides ([6]) an exam
ple of a space uniformly rotund in each direction which is nevertheless not even weakly 
uniformly rotund in the sense of V. SMULJAN ([5]), (i.e. whenever \xn\ = \yn\ = 1, 
||*» + y«|| "* 2> then xn — yn ---> 0). It is also elementary to construct in three 
dimensions an example of a space which is not uniformly rotund exactly in one 
direction. 

Proposition 3. Suppose P is a linear subspace of a Banach space X. If X is uni
formly rotund (weakly uniformly rotund) along P, then P is a uniformly Haar 
(a weakly uniformly Haar) subspace of X. 

Proof. It reduces only to some easy considerations which may be found in 
[6, Prop. 9]. 

Remark . If dim P _ 2, then it is very easy to construct a Haar proper subspace 
along which the space is not uniformly rotund. 

Definition 3. Suppose P c= X is a closed linear subspace of a Banach space X. 
We say P has the uniform extension property (the weakly* uniform extension pro
perty) if the following implication is valid: whenever /„ e X*, gn e X*, fn — gne P1, 

1/. |P - 1, \\fn\\ - 1, Nft.ll - *> t h e n /- - 9n -> 0 (/„ - gn Z 0). 

Remark . It is evident that the condition in Definition 3 is equivalent to the fol
lowing one: if /„ e X*,gH e X*, fn - gnePL, \\fn\\P = 1, \\fn\\ -> 1, \\gn\\ -+ 1, then 

fn ~ 9n -> 0 (/„ - gn X 0). 

Proposition 4, Suppose P cz X is a closed linear subspace of a Banach space X. 
Then P has the uniform extension property (the weakly* uniformly extension prop-
erty) tff P1 nas tne uniform Haar property (the weakly* uniform Haar property). 

Proof. Suppose P1 does not have weakly* uniformly Haar property. 

Then there exists {/„} cz X*, {/„} bounded, {hn} cz P1, {gn} cz P1 and x e St cz X 
such that Q(f„, P1) - Q(fn, hn) -* 0, Q(fn, P1) - Q(fn, gn) -> 0, \(hn - gn) (x)\ = 

^ e > 0. As it was pointed out in [4], for every feX* and each subspace Y cz X, 
Q(f,Y1) = ||/||y. If \\fnk\\ ~+ ^ f° r some subsequence nk, then it would follow from 
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our assumptions hnk — gtt]c -> 0 which contradicts our assumptions. Therefore we 
may suppose without any loss of generality |/B||p -• a =f= 0. Denote Fn = /„ — hn9 

Gn=fn-g„ neN. Then \Fn\-* a, \\Gn\ - a, ||Fn||P = ||G„||P = | | / J P -> a. 
Fn-Gn = gn-hneP\ \(Fn - Gn) (x)\ = \(hn - gn) (x)\ = e > 0. Therefore P 
does not have the weakly* uniform extension property. 

On the other hand, suppose P does not have the weakly* uniform extension pro
perty. Then there exist F„, Gn e X*, Fn - G„ = hne P\ xeSi c I , | ( F B » Gn) (x)\ = 

= s > 0, IF . ! -> 1, \\Gn\\ -+ 1, ||Fn||P -> 1. Then Q(Fm P1) = ||Fn||P -* 1, Q(G„ P1) -
= ||Gn||p-^ 1, {Fn} is bounded. Therefore we have Q(F„, P1) - o(F„, 0) -• 0, 
e(F„, P1) - Q(F„, hn) -> 0, {Fn} bounded, \hn(x)\ = e > 0. Thus P1 would not have 
the weakly* uniform Haar property. 

Proposition 5. If P c X is a one dimensional subspace of a Banach space X, 
then P has the uniform extension property (the weakly* uniform extension pro-
perty) iff the norm of X is Frechet (Gateaux) differentiable at z where P n St = 
= {z, -z). 

Proof. By SMULJAN'S theorem ([5]) the last two properties are equivalent to the 
following properties respectively: whenever /„ e S*9 gn e 5*, fn(z) -* 1, gn(z) -* 1, 
then /„ - gn - 0 (/„ - gn X 0). Take fn = fmjfH(z), gn = gn\gn(z). Then /„' = gn 

on P and \\fn\\ -* 1, ||g^|| -> 1, \\f„\\p = 1. Therefore if P has for example the uniform 
extension property, we have fn - gn -» 0 whenever fn(z) -> 1, gn(z) -• 1, ||/n|| = 
= ||^n|| = 1. On the other hand, if the norm of X is Frechet differentiable at ze 
eSt n P where P is generated by z, and if we suppose/, = gn on P and ||/„||p -* 1, 
H/n!l - 1 . W l - 1 . t h ^ \fn(z)\ = | | / „ | | P - 1. Therefore (sign/n(z)) .fn(z) -+ 1, (sign fn(z)). 
.gn(z)-+l. Denote / ; = (sign fn(z)) . /„, gn = (sign/M(z)) . gn. Then f^gf

neX*, 
f'n(z) = ^ (z ) - 1, \f'n\ -> 1, \g'n\ -+ 1. Denote £ = fli\fu\9 g"n = g;/||g;||. Then 
we have ff

n'(z) -> 1, g"n(z) -> 1, ||/;| | = ||̂ |̂J = 1. Therefore by Frechet differen
tiability of the norm of X we have fn — gn -> 0. Thus 

||/„ - 0B|| = ll lAl l . / ; - lkn|| - ^'|| - 0. 

Hence P has the uniform extension property. 

Corollary l.IfxeSi c X, then the norm ofX is Gateaux (Frechet) differentiable 
at x iff P1 is a weakly* uniformly Haar (a uniformly Haar) subspace of X*, 
where P is a one dimensional subspace ofX generated by x. 

Now, we are going to investigate the dual property to that of the uniform rotundity 
along subspaces. 

Proposition 6. Suppose P <z X is a finite dimensional subspace of a Banach 
space X. Then if P1 has the Haar property (i.e. P1 is a Cebysev subspace of X*), 
then P1 has the weakly* uniform Haar property. 
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Proof. If P1 does not have the weakly* uniform Haar property then P does 
not have the weakly* uniform extension property, by Proposition 4. It means 
there exist /„ e X*, gneX*, fn = gn on P, ||/n | |p -> 1, ||/n|| -+ 1, \\gn\ -> 1 and 
\(fn ~ gn) (x)\ = e > 0 for some xeSt c l . Take subnets /Wv, g„v of fn and gn 

respectively such that f„v^+f0eK*, g„v^+ g0eK*. Then the restrictions /„v/P 
and gnJP have the property that sup |(/„v - / 0 ) (x)j —> 0 and analogously for g„v 

and g0. Thus because of | | / n | | P -> l , ||/o||p = U liminf | | / nJ = ||/0|| ^ ||/0 | |P, 
V 

liminf | | / nJ = 1 (for ||/n|| -> 1), we have | | / 0 | = 1. Analogously for g0. Since 
\(fnv ~ g«v) (x)\ ^ e > 0, we have / 0 =# g0. Therefore P does not have the unique 
extension property and thus P1 does not have the Haar property ([4]). 

Proposition 7. If P cz X is a linear subspace of a Banach space X then X is 
uniformly rotund along P (weakly uniformly rotund along P) iff the following 
conditions are satisfied respectively: whenever {xn} is a bounded sequence in X, 
{Pn} a sequence of one dimensional subspaces of P, yn,znePn for neN and 

Q(*n> Pn) ~ Q(xn, yn) -» 0, Q(X„ Pn) - Q(xn, Z„) -> 0 then yn - zn -> 0 (yn - zn ^ 0). 

Proof. Suppose P does not have the property of our assertion in the weak sense. 
Then there exist a bounded sequence {xn}, one dimensional subspaces Pn c P and 
yn, zn G Pn such that Q(XK, Pn) - Q(XH, yn) -> 0, Q(X„ Pn) - o(xn, zn) -> 0, but 
\f(yn — zn)| ^ e > 0 for some fe S* c X* and e > 0. If for some subsequence nk, 
Q(xnk, Ptlk) -> 0, then our assumptions imply Q(ynk, z„k) -> 0, a contradiction. There
fore since ^(xn, Pn) g ||xn||, we may suppose Q(X„, Pn) -> k + 0. Denote sn = 
= *„ ~ y„, tn = xn - zn. Then ||sn[| -+ k, \tn\ -> k,i\sn\ + i\tn\ = \\i(sn + rn)|| = 
= I*/. ~ i(yn + zn)\ IES Q(xn, P„). Both sides of this inequalities converge to k and 
therefore since sn — tn = zn — yn e Pn c P, we have that X would not be weakly 
uniformly rotund along P for we have simultaneously ||sn|| -> k, \tn\ -> k, 
li(sn + Oil - k. 

On the other hand, suppose X is not weakly uniformly rotund along P. Then there 
exist {xn}, {yn} c S± cz X, xn - yneP such that inf \\txn + (1 - t) yn\\ = 1 -

*e<0,l> 

- en -+ 1 and |/(xn - yn)\ = e > 0 for some fe S* cz X* and e > 0. Consider 
yn = i(*n + yn) - *n, qn = i(xn + yn) - yn, rn = i(xn + yn), Pn the one dimensional 
subspace of P generated by xn - yn, neN. Then ||rn - Pn|| = ||xn|| = \\yn\\ = 
= ||r» - q/i|| = 1> ar-d Q(rn,Pn) <L ||rn|| <; 1. For a fixed neN take an arbitrary 
element z e Pn. Then there exists an e R such that z = anpn + (1 — an) qn. Then 
z - rn = - (a nx n + (1 - an) yn). It is evident that if an $ <0, 1>, then ||anxn + 
+ (1 - an) yn\ = 1 and for an e <0, 1>, ||anxn + (1 - an) yn|| = 1 - en. Therefore 
for each z e Pn, ||z — rn|| ^ 1 — en -> 1. Thus 1 ^ Q(rn, Pn) = 1 — en. Hence we 
have obtained Q(rn, pn) - Q(rn, Pn) -> 0, o(rn, qn) - o(rn, Pn) -> 0, pn, qn e Pn, 
\f(Pn - gn)| = e > 0, ||rn|| ^ 1. Therefore then X would not satisfy the conditions 
of our Proposition in the weak sense. 
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Proposition 8. Let P cz X be a closed linear subspace of a Banach space X. 
Then X* is uniformly rotund along P1 (weakly* uniformly rotund along P1) 
iff the following conditions are satisfied respectively: if / . , 0„eX*, X => Pn => P, 
Pnclosed, codimP„ = 1, hn = fH — gneP„ for neN are such that | | / J -> 1, 
||g„|| - 1, | | /„ |k - 1. then f, - g„ -+ 0 (fn - gn X 0). 

Proof. Suppose P does not have the property of our assertion for the weak* case. 
Then there exist /„, gn e X*, P1 one dimensional subspaces of P1 such that ||f.|| -> 1, 
|0. | | - U K=fn-gne P1, \\fH\\Pn -> 1, and such that |(/„ - gn) (x)\ = e > 0 
for some x e St c X and e > 0. Then again Q(fn9 P1) = \\fn\\Pn -> 1, e(g„> P1) = 
= \\gn\\Pn -> 1. Thus Q(fn9 P1) - o(/„, 0) -> 0, o(/n, P1) - Q(fn9 hn) -+ 0, {/„} bounded 
and |h„(x)| ^ £ > 0. Therefore by Proposition 7, X* is not weakly* uniformly 
rotund along P1. 

On the other hand, if X* is not weakly* uniformly rotund along P1, by Proposi
tion 7 there exist {/,} c X*, {/,} bounded, one dimensional subspaces P1 of P1 

and gn9 hn e P1 such that Q(fn, P1) - Q(fn9 gn) -> 0, Q(fn9 P1) - Q(fn9 hn) -> 0 and 
|(g„ — hn) (

x)\ ^ e > 0 for some x e Si c= X and e > 0. Suppose again without any 
loss of generality Q(fn9 P1) -> k * 0 (o(fn, P1) g ||f„|). Then denoting Fn = fn - a„, 
G„ = f„ - h„, we have \\FH\\ - k ||Gn|| -> k, \\Fn\\Pn = ||Gw||Pn = \\fn\\Pn = (,(/„, P1) -> 
-> k, \(Fn — Gn) (x)\ = \(gn — hn) (x)\ ^ e > 0. Therefore the conditions of our 
statement are not satisfied, since we have simultaneously ? „ = > ? (we take P„ closed). 

Proposition 9. A Banach space X has a uniformly Frechet (uniformly Gateaux) 
differentiable norm iff the following conditions are satisfied respectively: when
ever Pn are one dimensional subspaces of X and fn, gne X* such that \\fn\\ -> 1, 

||g„|| - h fn - 9n e P„\ \\fn\\Pn - 1, then fn - gn -> 0 (fn - gn * 0). 

Proof. The property of X to have a uniformly Gateaux differentiable norm is, 
by Smuljan's theorem ([5]), equivalent to the following: whenever /„, gn e 5*, 
zn e St such that fn(zn) -> 1, gn(zn) -> 1, then fn — gn ---> 0 in X*. Suppose now the 
property of our assertion is satisfied. Take fn9 gn e S*9 zn e St such that fn(zn) -> 1, 
9n(zn) ~* 1- For neN denote Pn the one dimensional subspace of X generated 
by z„. Then 1 = \\fn\\Pn^fn(zn) -> 1, 1 = \\gn\\Pn = gn(zn) -> 1; denoting f; = 
= /„//„(*„), g; = g„/g„(*„), we havef; - g^eP1 and ||f;|| - 1, J^fl -> 1, ||f;||pn -> 
-> 1. Therefore by our property fn — g'n ̂ -> 0 and thus / , - g„ --+ 0. 

On the other hand, let X has a uniformly Gateaux differentiable norm. Suppose 
fn,gneX*9 Pn one dimensional subspaces of X, ||/B|| -> 1, ||an|| -> 1, /„ - gHePJ;9 

\\fm\\pn-+ 1- For n e N take P^z^eS! such that fn(zn) = fl/J^. Then evidently 
gJtu) - W k T^ke / ; =/„/ | | /„| | , g; = g„/||g„||. Then \\ff

n\\ = | |^| | = 1, f'n(zn) = 
= W J W ' * & . ) = \\9n\\pJ\\9nl Furthermore, ||/n||pn/||/w|| -> 1 since ||/,,||pn -> 1 
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and ||f„|| -• 1. Analogously for gn. Thus fn(zn) -» 1, gn(zn) -» 1. Therefore, by the 
w* 

uniform Gateaux differentiability of the norm of X, fn — g'n —> 0 and therefore 

fn-9n=\\fn\\-fn- \\9n\\-9n^0-

Analogously for the uniform Frechet differentiability. 

Thus we have 

Proposition 10. A Banach space X has a uniformly Frechet (uniformly Gateaux) 
differentiable norm iff the following conditions are satisfied respectively: whenever 
fn, gn e X*, Pn are closed linear subspaces ofX such that codim Pn = 1 andfn = gn 

on Pn, \\fn\\Pn -> 1, ||/„|| -* 1, \\gn\\ -> 1, then fn-g„^0 (/„ - gn £ 0). 

Proof. The last property for the weak case is by Proposition 8 (P = 0) equivalent 
to the fact that X* is weakly* uniformly rotund, which means that iff,, gn e S* c X*, 

\\i(fn + 0n)| -> -U then fn — gn^+ 0. This property is, by Smuljan's result, dual to 
the uniform Gateaux differentiability of the norm of X. Similarly for the strong case. 
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