
Časopis pro pěstování matematiky

Bohdan Zelinka
On some graph-theoretical problems of V. G. Vizing

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 1, 56--66

Persistent URL: http://dml.cz/dmlcz/117788

Terms of use:
© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117788
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

ON SOME GRAPH-THEORETICAL PROBLEMS OF V. G. VIZING 

BOHDAN ZELINKA, Liberec 

(Received January 28, 1971) 

In [2] V. G. VIZING suggests a number of unsolved graph-theoretical problems. 
Here we shall solve partially two of them. 

The first problem we shall investigate is the following one: 
Which is the maximal number of edges that a graph with n vertices and with 

a given Hadwiger number can have? 
Here this problem is solved for Hadwiger number 3. 
We say that a graph G can be contracted onto a graph H if and only if the graph H 

can be obtained from G by a finite number of the following operations: 

(a) deleting an edge; 
(b) deleting an isolated vertex; 
(c) identifying two neighbouring vertices, i.e. replacing of two neighbouring 

vertices x and y by a new vertex neighbouring to exactly all vertices which were 
neighbouring to at least one of the vertices x and y. 

We consider only finite undirected graphs without loops and multiple edges. 
The Hadwiger number rj(G) of a graph G is the maximal number of vertices of 

a complete graph onto which G can be contracted. 
By kk(ri) for any positive integer n we shall denote the maximal number of edges 

of a graph of Hadwiger number k with n vertices. 
The graphs with Hadwiger number 3 are graphs which can be contracted onto 

a triangle, but not onto a complete graph with four vertices. 
If G is a graph, C a circuit in G, then a diagonal arc of C in G is an arc joining two 

vertices of C whose internal vertices do not belong to C. Two vertex-disjoint diagonal 
arcs Pt and P2 of C will be called topologically crossing if and only if the circuit C 
and the arcs Pt and P2 cannot be drawn in the plane so that the arcs Pt and P2 might 
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be drawn in the interior of the drawing of C without crossing each other. (This term 
is defined only for the use of this paper.) 

The following lemma is evident. 

Lemma 1. A graph G has Hadwiger number not exceeding 3 if and only if no 
circuit C in G has two vertex-disjoint topologically crossing diagonal arcs. 

We shall prove another lemma. 

Lemma 2. For every positive integer n ^ 2 any graph of Hadwiger number 3 
with n vertices and maximal possible number of edges is connected and without 
articulations. 

Proof. Assume that such a graph G is disconnected. Then we join two vertices of 
different connected components of G by an edge e; the graph thus obtained will be 
denoted by G'. The edge e is a bridge in G', therefore it belongs neither to a circuit, 
nor to a diagonal arc of some circuit in G'. This means that all circuits and their 
diagonal arcs in G' are those of G and G' has also Hadwiger number 3, which is 
a contradiction with the maximality of G. 

Now assume that G is connected and contains an articulation a. Let Ll9 L2 be two 
lobes whose common vertex is a. Let u1 and w2 be vertices of Lx and L2 respectively 
joined by an edge with a. Let G" be a graph obtained from G by adjoining an edge h 
joining wx and u2. Let C be a circuit in Ll9 let P be a diagonal arc of C in G" not 
contained in G and joining the vertices v1 and v2 of C. Then P consists of an arc Pt 

from i\ (or v2) to a9 an arc P2 from a to ul9 the edge h and an arc P3 from u1 to v2 

(or vt). Then there exists an arc P' in G joining vx and v2 and consisting of the path Pl9 

the edge au1 and the path P3. This is either a diagonal arc of C, or an edge of C (if 
the vertices vl9 v2 are identical with ul9 a). If some other diagonal arc P" of c vertex-
disjoint with P forms together with P a pair of topologically crossing diagonal arcs 
of C in G", then P" is in Ll9 because it contains neither a nor h. This means that P" 
forms a pair of topologically crossing diagonal arcs of C also with P' and this pair 
is also in G, which is a contradiction. Analogously we can consider any circuit in L2. 
A circuit in G which is neither in Lx nor in L2 evidently cannot have a diagonal 
arc in G" not contained in G. We have proved that by adjoining the edge h no pair 
of topologically crossing diagonal arcs of any circuit of G is obtained. Now consider 
a circuit C in G" not contained in G. Evidently it consists of an arc R1 from a to ut 

in Ll9 the edge h and an arc R2 from w2 to a in L2. Any diagonal arc of C joins either 
two vertices of Rl9 or two vertices of R2. As Lt is a lobe, there exists an arc R[ 
joining a and u1mL1 and having no vertex in common with Rt except for a and ux. 
The arcs Rl9 R\ form a circuit Q in Lx; any diagonal arc of C joining two vertices 
of Rt is also a diagonal arc of C1 and any two such arcs which would be topologically 
crossing in G" would be topologically crossing also in G. Analogously for R2. Finally, 
a diagonal arc of C joining two vertices of Rt and a diagonal arc of C joining two 
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vertices of R2 cannot evidently be topologically crossing. Therefore G" has also 
Hadwiger number 3, ŵ hich is a contradiction with the maximality of Gf 

Lemma 3. Let G be a graph of Hadwiger number 3 with n vertices. Let u be its 
vertex and G0 the graph obtained from G by deleting u. Let G0 be a connected graph 
with p lobes. Then u is joined in G at most with p + 1 vertices. 

Proof. First assume that three vertices of a lobe Lof G0 are joined with u in G. 
Then there exists a circuit in this lobe containing all of them; it can be contracted 
onto a triangle, whose vertices are these three vertices. This triangle together with u 
and the edges joining u with its vertices form a complete graph with four vertices and 
rj(G0) jj£ 4, which is a contradiction. Therefore u can be joined at most with two 
vertices of the same lobe. Now let u be joined with two vertices vi9 v2 of a lobe L, 
none of which is a cut-vertex. If there exists at least on vertex v3 in G0 which is joined 
with u in G and different from vt and v2, then let a be the cut-vertex belonging to L 
and separating v3 from vt and v2. In Lthere exists a circuit containing vl9 v2 and a. 
The subgraph of G consisting of this circuit, of the edges uvu uv2, uv3 and of an arc 
joining a and v3 in G0 (none of whose edges is in L) can be contracted onto a complete 
graph with four vertices. Therefore if G0 has cut-vertices, at most three vertices of G0 

are joined with u in G and two of them belong to one lobe, not being cut-vertices, the 
graph G has not the assumed property. We shall continue by induction with respect 
to p. For p = 1 the assertion holds, because G0 consists of one lobe and we have 
proved that no three vertices of one lobe can be joined with u in G. Let r ^ 2, let the 
assertion hold for p < r. If we delete one lobe L except for the cut vertices in it 
from G0 so that the resulting graph Gx is connected (this is always possible), then Gt 

has r — 1 lobes and u is joined in G with at most r vertices of Gt. Now at most.one 
vertex of L which is no cut-vertex may be joined with u. The lobe L contains only one 
cut-vertex which is in Gx (because it is a common vertex of L and some other lobe), 
thus at most r + 1 vertices of G0 can be joined in G with u. 

Now we shall prove 

Theorem 1. Let Xk(n) be the maximal number of edges of a graph G of Hadwiger 
number k with n vertices. Then 

X3(n) = 2n - 3 

for any positive integer n ^ 2. 

Proof. We shall prove the assertion by induction. The graphs with two or three 
vertices evidently cannot be contracted onto a complete graph with four vertices. The 
maximal number of edges of a graph with n = 2 vertices is 2n - 3 = 1, the maximal 
number of edges of a graph with n = 3 is 2n — 3 = 3. For n = 4 only the complete 
graph with 4 vertices has Hadwiger number 4, no other can be contracted onto it. 
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Thus the graph of Hadwiger number 3 with four vertices and the maximal possible 
number of edges is the graph obtained from the complete graph with four vertices 
by deleting one edge. Now let n = r — 5 and let the assertion hold for 2 = n < fc. 
Let G be a graph with k vertices and X3(r) edges for which n(G) = 3. Delete one 
vertex u from G and denote the obtained graph by G0. According to Lemma 2 G0 is 
connected. According to Lemma 3 the number of vertices of G0 joined by edges 
with u in G is at most p + 1, where p is the number of lobes of G0. Let the lobes of G0 

be Ll9..., Lp9 let lt be the number of vertices of Lt for i = 1,..., p. For the number 
r — 1 of vertices of G0 we have 

(1) r - 1 = £ J, - p + 1 . 
i = l 

Any lobe of G0 is a graph with Hadwiger number not exceeding 3 (because this 
property is evidently hereditary). According to the induction assumption the number 
of edges of L{ does not exceed 211 — 3 for i = 1,..., p. For the number m0 of edges 
of G0 we have 

m 0 g i ( 2 / l - 3 ) = 2 i / J - 3 p . 
i = l i = l 

As u is joined with not more than p + 1 vertices of G0, for the number m of edges 
of G we have 

p 
m ^ m0 + p + 1 = 2 £ /. - 2p + 1 . 

i = l 

From (1) we have 

tu~r + p-2, 
i = l 

therefore 
m ^ 2r — 3 . 

We have proved that 2n — 3 is the upper bound for the number of edges of a graph 
with Hadwiger number 3 with n vertices. It remains to prove that for every n = 2 
this bound is attained. For any given n ^ 2 we construct the "fan graph" Fn as follows. 
The vertices of Fn are vl9..., vn and its edges are ViVi+l for i = 1,..., n — 1 and vtVj 
for j = 3, . . . , n. If n > 2, a contraction of any edge leads either to Fn„l9 or to the 
graph with two lobes isomorphic to Fr with 2 ^ r < n . I f n = 2 , then F2 is a graph 
consisting of two vertices and one edge. Thus by induction one can prove that Fn 

cannot be contracted onto a complete graph with four vertices, q.e.d. 
In the end we shall consider also Ax(n) and k2(n). Any graph containing at least one 

edge can be contracted onto a complete graph with two vertices. Thus tj(G) = 1 if and 
only if G contains no edges and 

At(n) = 0. 
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Any graph containing at least one circuit can be contracted onto a complete graph 
with three vertices. Thjis n(G) = 2 if and only if G is a forest with at least in edge and 

X2(n) = n — 1 . 

Comparing Aj(n), X2(n), A3(n) leads us to a conjecture. 

Conjecture. For the maximal number Xk(n) of edges of a graph of Hadwiger 
number fc with n vertices we have 

Цn) = (к - 1) n - Q ) 

for any two positive integers fc, n ^ 2. 

ii. 

The other problem which will be studied here is the following one: 
Which is the maximal number of edges of a connected undirected graph with n 

vertices, none of whose spanning trees has more than fc terminal edges? 
We shall denote this number by T(n, fc). We shall give the solution for some special 

cases, namely for fc = 2, fc = 3, fc = n — 3, fc = n — 2, fc = n — 1. We study graphs 
without loops and multiple edges. 

Evidently we can define neither T(n, 1) nor r(n, n), because a spanning tree of 
a graph with n vertices has at least two and at most n — 1 terminal edges. 

Before investigating concrete values of fc, we shall introduce an auxiliary concept. 
If G0 is a connected subgraph of G, then the degree of G0 in G is the number of 

vertices of G not belonging to G0 which are joined with a vertex of G0. If G0 consists 
only of one vertex, its degree is equal to the degree of this vertex. 

Now we shall prove a lemma. 

Lemma 4. Let G be a connected undirected graph. Then the maximal number of 
terminal edges of a spanning tree of G is equal to the maximal degree of a con
nected subgraph of G. 

Proof. Let G0 be a connected subgraph of G with the maximal degree fc. Let 
Ul9..., uk be the vertices not belonging to G0 and joined by edges with vertices of G0. 
Choose a spanning tree T0 of G0. Then for any i = 1,..., fc choose an edge et 

joining uv with a vertex of G0. The graph T0 consisting of all vertices of G0, vertices 
ul9 ..., uk9 all edges of G0 and all edges ei9..., ek is a tree in which e-l9..., ek are 
terminal edges. This tree T0 is a subtree of a spanning tree T of G which has also at 
least fc terminal edges. (Evidently the number of terminal edges of a subtree of a tree T 
is less than or equal to the number of terminal edges of T) On the other hand, let I 
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be the maximal number of terminal edges of a spanning tree of G. Let T1 be a spanning 
tree of G with / terminal edges. Let Gx be the subgraph of G generated by all vertices 
which are not terminal in Tv Then G0 has the degree /. 

Now we shall prove theorems on the numbers T(n, k). 

Theorem 2. T(n, 2) = n for every n ^ 3. 

This assertion is evident; we leave the proof to the reader. 

Theorem 3. t(n, 3) = n + 2 for every n _ 4. 

Proof. Let G be a graph with n vertices (n = 4) such that none of its spanning 
trees has more than three vertices. At first assume that G has a Hamiltonian circuit C 
consisting of the vertices ui9..., un and the edges uiui+1 for i = 1, . . . , n — 1 and unu^ 
Assume that there exists an edge utUj where |i — j | _ 3 (the difference is taken 
modulo n). Without any loss of generality let i = 1; then j 4= 2, j 4= 3, j 4= n — 1, 
J 4= n. Let T0 be a subgraph of G consisting of the vertices ul9 ul9 u/_i, u/, u7 + 1 , un 

and of the edges u1u29u1un9u1uj9uJ_1uj9uJuJ + 1-9 it is a tree in which all edges 
except uxUj are terminal, therefore with four terminal edges. The tree T0 is a subtree 
of some spanning tree Tof G which has at least four vertices, which is a contradiction. 
Therefore any edge not belonging to C is utui+2 for some i9 1 ^ i _ n (the sum 
i + 2 is taken modulo n). Let there exist an edge WiW3 (without any loss of generality) 
and some other edge u}uJ + 2 (where j 4= 1). Evidently j 4= 3, j 4= n — 1, because 
otherwise Uj or u / + 2 would have the degree at least four. Assume 4 ^ j = n — 2. 
The there exists a subgraph T1 of G consisting of the vertices ul9..., w7+2 and of the 
edges Wiu3,

 ujuj+2 ar1d ufwi + i for i = 2, . . . ,J It is a tree with four terminal edges 
utu3, u2

M3> ujuj+u ujuj+2 a n d we obtain a similar contradiction as in the preceding 
case. Therefore an edge of G not belonging to C and different from utu3 can be only 
u2u4 or unu2\ they cannot exist both, because u2 would have the degree at least four. 
Therefore G has at most n + 2 edges. Now assume that G has no Hamiltonian circuit. 
Let C0 be the circuit of the maximal length / in G, let its vertices be vl9 ..., vt and its 
edges vtvi+1 for i =» 1, . . . , / — 1 and vjvi. Let there exist two vertices wl9 w2 not 
belonging to C and joined by edges with vertices of C. If the length of C is at least 5, 
we can choose an edge e of C such that w1 and w2 are joined with the vertices vi9 Vj 
which are consequently not incident with e. The tree whose edges are all edges of C 
except e and vtwl9 VjW2 (we may have v{ = v7) is a subtree of G with four terminal 
edges. Thus if the length of C is at least 5, there may exist only one vertex w not 
belonging to C and joined with a vertex of C. For the edges joining two vertices of C 
and not belonging to C the same holds as in the case of a Hamiltonian circuit. So 
assume that there are two such edges; let one of them (without any loss of generality) 
be t71t73 and the other vtv2. There exist two subtrees of G with three terminal edges not 
containing w, namely Tx with the edges vtvi+l for i = 2 , . . . , / — 1 and vxv3 and T2 
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with the edges vivi+1 for i = 3,..., / - 1, Vpl9 vtv2. If w is joined with some vi9 

where 4 £ i <£ J - l^then by adding the vertex w and the edge utw to Tx or to T2 

we obtain a tree with four terminal edges. If w is joined with v3 or vl9 then by adding w 
and i?3w or vxw to Tx or T2 respectively we obtain also a tree with four terminal edges. 
If w is joined with vx or t?2, then vx or v2 has the degree at least four. We have proved 
that if there are two edges joining vertices of C and not belonging to C (for C of the 
length at least 5), then C must be a Hamiltonian circuit of G. Now assume that there 
exists one edge joining two vertices of C and not belonging to C; analogously to the 
case when C is Hamiltonian this edge is (without any loss of generality) vxv3. Then 
there exist two subtrees of G not containing vertices outside of C with three terminal 
edges, namely Tx with the edges vtvi+1 for i = 4 , . . . , / — 1, vtvl9 vxvl9 vxv3 and T2 

with the edge's vtvi+1 for 1 = 2 , . . . , / — 1, vxv3. If w is joined with vt for 4 ^ i ^ 
g / — 1, then by adding w and v(w to Tt or JT2 we obtain a tree with four terminal 
edges. If w is joined with vx or v3, then by adding w and vtw or t;3w to Tx or T2 

respectively we obtain also a tree with four terminal edges. Thus w can be joined only 
with u2. If there are two vertices xl9 x2 joined with w and not belonging to C, then by 
adding the edges v2w9 wxl9 wx2 to Tx or T2 we obtain again a tree with four terminal 
edges. Thus w can be joined only with one vertex wt not belonging to C; analo
gously wx can be joined only with one vertex w2 not belonging to C and different 
from w etc.; therefore the subgraph of G generated by t?2 and all vertices not belonging 
to C is an arc. We have proved that the subgraph generated by the vertices of C has 
at most / + 2 edges, if C is Hamiltonian, or at most / + 1 edges, if there are some 
vertices not belonging to C. In the former case C is Hamiltonian and / = n9 thus 
/ + 2 = n + 2. In the latter case the number of vertices not belonging to C is n — / 
and, as they generate an arc, the number of edges joining vertices not belonging to C 
is n — / — 1 and there is one edge joining a vertex not belonging to C, namely w, 
with a vertex of C, namely v2. The total number of edges of G is at most n + 2. 
From the proof it follows that this bound can be always attained. It remains to discuss 
the case when the length of the longest circuit in G is less than 5. If it is 3, then any 
circuit of G is a lobe of G, therefore any lobe of G is either a triangle, or a bridge. 
Assume that two lobes Ll9 L2 of G are triangles. If they have a common vertex, it 
has the degree at least 4, which is impossible. Otherwise we take an arc joining 
a vertex vx of Lx with a vertex v2 of L2 and having no edge in common with Lt and L2. 
The tree consisting of this arc, of two edges from Lt incident with vx and of two edges 
of L2 incident with t?2 has four terminal edges, namely the edges of Lx and L2 incident 
with vx or v2. Therefore G can have at most one lobe which is a triangle, the others 
being bridges. The cyclomatic number of G is at most 1, thus G has at most n edges. 
If the length of the longest circuit in G is 4, then any lobe of G is either a bridge or 
a triangle, or it consists of a system of at least two edge-disjoint arcs of the lengths 1 
or 2 joining two vertices a and b. Analogously to the preceding case we can prove 
that there is at most one lobe which is not a bridge. According to the assumption it 
cannot be a triangle, thus it is of the last type. The number of paths joining a and b 
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can be at most three, otherwise a and b would have the degree greater than three. If 
they are two or three, the cyclomatic number of G is 1 or 2 respectively, and the 
number of vertices of G is n or n + 1, respectively. 

Theorem 4. T(n, n — 3) = \n2 — -fn + 5 for every n ^ 5. 

Proof. Let G be a graph with n vertices (n 2> 5) such that none of its spanning 
trees has more than n — 3 terminal edges. Investigate the complement G of G. The 
graph G has the following properties: 

(a) the degree of any vertex of G is at least two; 
(b) the diameter of G is at most two; 
(c) the complement G of G is connected. 

If G had not the property (a), there would exist some vertex u of G of the degree 0 or 1. 
This vertex would have the degree n — 1 or n — 2 in G, therefore the star with the 
center u would be a subtree of G with more than n — 3 terminal edges. If G had not 
the property (b), then there would exist two vertices ul9 u2 of G with the distance 
greater than two. There would not exist any vertex joined with both u1 and u2 and 
these two vertices also would not be joined together. This means that in G any 
vertex would be joined at least with one of the vertices ul9u2 and there would exist 
the edge uxu2. For any vertex of G different from u1 and u2 we choose one edge 
joining it with u1ox u29 these edges together with u1u2 would form a spanning tree 
of G with n — 2 terminal edges. The condition (c) follows from the text of the problem, 
because only connected graphs have spanning trees. 

We can construct a graph G0 satisfying the conditions (a), (b), (c) and having 
2n — 5 edges. This is the graph whose vertex set is ul9 ul9 vl9..., i?n_4, wl9 w2 and 
whose edges are utvt and u2vi for i = 1,..., n — 4, and further utwl9 wtw29 u2w2. 
This graph G0 contains n vertices and 2n — 5 edges. We shall prove that there does not 
exist any graph with less than 2n — 5 edges satisfying the conditions (a), (b), (c). 
Assume that there exist a graph Gx with n vertices and less than 2n — 5 edges 
(n —̂ 5) satisfying the conditions. At least one of the vertices of Gx must have the 
degree less than four; in the opposite case G1 would contain at least 2n edges. Thus 
also the vertex connectivity degree of Gx is at most 3. Let JR be a cut set of Gt with 
the minimal number of vertices. At first assume that \R\ = 1, thus R = {a}9 where a 
is some cut vertex. If w, v are two vertices of Gt separated by a, then they must be both 
joined with a, because their distance cannot be greater than two and any arc joining 
them must contain a. As these vertices were chosen arbitrarily, this implies that a is 
joined with all other vertices of Gt. Then a is joined with no other vertex in the 
complement of Gt and is an isolated vertex; therefore this complement is not 
connected, which contradicts (c). Assume |JR| = 2, thus R = {al9 a2}. LetKl5 ...,Kt 

be the connected components of the graph obtained from Gx by deleting the vertex 
set R and all edges incident to it. Assume that in Kt (without any loss of generality) 
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there exists a vertex ut joined with ax and not with a2 and a vertex w2 joined with a2 

and not with ax. Let v be a vertex of some Kt for i 4= 1. It must have the distance at 
most 2 from both ux and u2, therefore it must be joined with both ax and a2. As v 

i 

was chosen quite arbitrarily, any vertex of \J Kt must be joined with both a± and a2. 
i = 2 

I 

Let m be the total number of vertices of \J Kt; then the number of edges not incident 
i = 2 

with vertices of Kt is at least 2m. The component Kx contains n — m — 2 vertices. 
It must be connected, thus it contains at least n — m — 3 edges. Each vertex of Kx 

must be joined with some vertex of R9 therefore there are at least n — m — 2 edges 
joining vertices of Kx with vertices of R. The graph Gx has then at least 2m + 
+ (n — m —" 2) + (n — m — 3) = 2n — 5 edges. Now assume that in Kx there is 
a vertex ut joined with ax and not with a2, but all vertices of Kt are joined with at. 
Then in Kt for each i = 2,..., / also all vertices are joined with at and there may 
also exist in it some vertices joined with at and not with a2. Let M be the set of vertices 
of Gt not belonging to R joined with at and not joined with a2. Let M\ for i = 
= 1,..., / be the intersection of M with the vertex set of Kt. Consider a connected 
component of the subgraph of Gt generated by the set Mf; let p be its number of 
vertices. As this component C is connected, it contains at least p — 1 edges. As any 
of its vertices is joined with al9 we have further p edges incident with vertices of this 
component. This component C is a subgraph of some Kt and evidently a proper 
subgraph; otherwise no vertex of Kf would be joined with a2 and ax would be a cut 
vertex separating vertices of Kt from other vertices of Gx. Therefore there exists at 
least one edge joining a vertex of C with some other vertex of Kt. We have at least 2p 
edges incident with vertices of C and with no other vertices of M. Therefore if \M\ = 
= q, then there exist 2q edges incident with vertices of M (this number was obtained 
as a sum over all such components C). Any of the vertices not belonging to M u R 
are joined with both at and a2. As the number of vertices not belonging t o M u i ? 
is n — q — 2, we have 2n — 2q — 4 edges joining these vertices with the vertices of R. 
Thus Gt has at least 2q + (2n — 2q — 4) = 2n — 4 edges. If all vertices not be
longing to R are joined with both a1 and al9 the graph Gt has evidently also at least 
2n - 4 edges. 

Finally assume that \R\ = 3, thus R = {al9 a2, a3}. We shall prove that in each 
of the components Kl9..., Kl9 except at most one, either there exists a vertex joined 
with all vertices of R> or there exist two vertices, each of which is joined with two 
vertices of R. Assume that Kt has not this property; i.e. that at most one vertex of Kt 

is joined with two vertices of R, any other vertex being joined exactly with one vertex 
of R. If each vertex of Kx is joined only with one vertex of R9 there must exist three 
vertices ul9 u29 uz of Kt so that u{ is joined with at for i = 1, 2, 3, and with no other 
vertex of R (otherwise the vertex connectivity degree of Gt would be less than three). 
Any vertex of Kt for i = 2,.. . , / must have the distance at most two from all three 
vertices ul9 ul9 M3, therefore it must be joined with all the vertices al9 al9 a3. If there 

64 



exists a vertex v of Kx joined with two vertices al9a2 (without any loss of generality) 
of R and not with a3 and all other vertices are joined only with one vertex of R each, 
then there exists a vertex u3 of Kx joined with a3 and with no other vertex of R. Any 
vertex of Kt (i = 2,.. . , /) must have the distance from both v and u3 at most 2, 
therefore it must be joined with a3 and one of the vertices al9 a2. If this K( contains 
only one vertex, it must be joined with all vertices of R, because we have assumed that 
the vertex connectivity degree of G1 is 3 and therefore each vertex has the degree at 
least 3. If Ki contains two different vertices wl9 w2, any of them must be joined with a3 

and one of the vertices al9 a2. Any of the components K{ (i = 1,..., /) must contain 
at least fcf — 1 edges, where fcf is the number of its vertices, and there are at least k% 

edges joining its vertices with vertices of R; therefore there are at least 2kt — 1 edges 
incident with vertices of Kt. But if for some Kt this number is exactly 2fct — 1, this 
means that any vertex of Kt is joined exactly with one vertex of R; then any vertex 
of Kj for j + i is joined with all vertices of R. Then the graph Gt contains at least 
3(n — k( — 3) + 2fcf — 1 = 3n + kt — 10 vertices, which is more than 2n — 5, 
because n _ 5. If exactly one vertex of K{ is joined with two vertices of R and any 
other vertex of Kt is joined only with one vertex of JR, then there are at least 2k( 

edges incident with vertices of K( and any vertex of Kj for j + i must be joined at 
least with two vertices of R; if such Kj consists only of one vertex, it is joined with all 
vertices of R, otherwise there exists at least one edge of Kj. Thus there are at least 
2k j + 1 edges incident with vertices of Kj forj #= i (kj is the number of vertices of Kj) 
and the total number of edges of Gt is at least 2n — 5. If in each Kt either there are 
two vertices joined with two vertices of R, or there is a vertex joined with all vertices 
of R, then there are 2fcf + 1 edges incident with vertices of Kt and Gx has at least 
2n — 4 edges. We have proved that there does not exist any graph satisfying (a), (b), 
(c) and having less than 2n — 5 edges. The existence of such a graph with exactly 2n — 5 
edges had been proved before. The graph G with the property that none of its spanning 
trees has more than n — 3 terminal edges and with the maximal possible number of 
edges is a complement of such a graph. Therefore its number of edges is \n(n — 1) — 
- (2n - 5) = in2 - |n + 5, q.e.d. 

Theorem 5. t(n, n — 2) = \n2 — n for n even, x(n, n — 2) = \n2 — n — \ for n 
odd, n — 4. 

Proof. The only tree with n vertices and n — 1 terminal edges is a star. A star can 
be a spanning tree of a graph G if and only if G contains a vertex u joined with all 
other vertices, i.e. of the degree n — 1. Therefore we look for a graph G with n 
vertices with the maximal number of edges, in which no vertex has the degree n — 1. 
For n even such a graph is a regular graph of the degree n — 2; it contains \n2 — n 
edges. For n odd such a graph does not exist, but there exists a graph, one of whose 
vertices has the degree n — 3 while all others have the degree n — 2. This is evidently 
the required graph and its number of edges is \n2 — n — | . 
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Theorem 6. T(W, n—- 1) = i«2 — ŵ for every n ^ 3. 

Proof is easy, it i&Ieft to the reader. 

Remark. The English terminology of the graph theory used in this paper is that 
of [ l ] . 
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