Časopis pro pěstování matematiky

Bohdan Zelinka
On some graph-theoretical problems of V. G. Vizing

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 1, 56--66
Persistent URL: http://dml.cz/dmlcz/117788

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON SOME GRAPH-THEORETICAL PROBLEMS OF V. G. VIZING

Bohdan Zelinka, Liberec

(Received January 28, 1971)

In [2] V. G. Vizing suggests a number of unsolved graph-theoretical problems. Here we shall solve partially two of them.

I.

The first problem we shall investigate is the following one:
Which is the maximal number of edges that a graph with n vertices and with a given Hadwiger number can have?

Here this problem is solved for Hadwiger number 3.
We say that a graph G can be contracted onto a graph H if and only if the graph H can be obtained from G by a finite number of the following operations:
(a) deleting an edge;
(b) deleting an isolated vertex;
(c) identifying two neighbouring vertices, i.e. replacing of two neighbouring vertices x and y by a new vertex neighbouring to exactly all vertices which were neighbouring to at least one of the vertices x and y.

We consider only finite undirected graphs without loops and multiple edges.
The Hadwiger number $\eta(G)$ of a graph G is the maximal number of vertices of a complete graph onto which G can be contracted.

By $\lambda_{k}(n)$ for any positive integer n we shall denote the maximal number of edges of a graph of Hadwiger number k with n vertices.

The graphs with Hadwiger number 3 are graphs which can be contracted onto a triangle, but not onto a complete graph with four vertices.

If G is a graph, C a circuit in G, then a diagonal arc of C in G is an arc joining two vertices of C whose internal vertices do not belong to C. Two vertex-disjoint diagonal $\operatorname{arcs} P_{1}$ and P_{2} of C will be called topologically crossing if and only if the circuit C and the arcs P_{1} and P_{2} cannot be drawn in the plane so that the arcs P_{1} and P_{2} might
be drawn in the interior of the drawing of C without crossing each other. (This term is defined only for the use of this paper.)

The following lemma is evident.

Lemma 1. A graph G has Hadwiger number not exceeding 3 if and only if no circuit C in G has two vertex-disjoint topologically crossing diagonal arcs.

We shall prove another lemma.
Lemma 2. For every positive integer $n \geqq 2$ any graph of Hadwiger number 3 with n vertices and maximal possible number of edges is connected and without articulations.

Proof. Assume that such a graph G is disconnected. Then we join two vertices of different connected components of G by an edge e; the graph thus obtained will be denoted by G^{\prime}. The edge e is a bridge in G^{\prime}, therefore it belongs neither to a circuit, nor to a diagonal arc of some circuit in G^{\prime}. This means that all circuits and their diagonal arcs in G^{\prime} are those of G and G^{\prime} has also Hadwiger number 3, which is a contradiction with the maximality of G.

Now assume that G is connected and contains an articulation a. Let L_{1}, L_{2} be two lobes whose common vertex is a. Let u_{1} and u_{2} be vertices of L_{1} and L_{2} respectively joined by an edge with a. Let $G^{\prime \prime}$ be a graph obtained from G by adjoining an edge h joining u_{1} and u_{2}. Let C be a circuit in L_{1}, let P be a diagonal arc of C in $G^{\prime \prime}$ not contained in G and joining the vertices v_{1} and v_{2} of C. Then P consists of an arc P_{1} from v_{1} (or v_{2}) to a, an arc P_{2} from a to u_{2}, the edge h and an arc P_{3} from u_{1} to v_{2} (or v_{1}). Then there exists an arc P^{\prime} in G joining v_{1} and v_{2} and consisting of the path P_{1}, the edge $a u_{1}$ and the path P_{3}. This is either a diagonal arc of C, or an edge of C (if the vertices v_{1}, v_{2} are identical with $\left.u_{1}, a\right)$. If some other diagonal arc $P^{\prime \prime}$ of c vertexdisjoint with P forms together with P a pair of topologically crossing diagonal arcs of C in $G^{\prime \prime}$, then $P^{\prime \prime}$ is in L_{1}, because it contains neither a nor h. This means that $P^{\prime \prime}$ forms a pair of topologically crossing diagonal arcs of C also with P^{\prime} and this pair is also in G, which is a contradiction. Analogously we can consider any circuit in L_{2}. A circuit in G which is neither in L_{1} nor in L_{2} evidently cannot have a diagonal arc in $G^{\prime \prime}$ not contained in G. We have proved that by adjoining the edge h no pair of topologically crossing diagonal arcs of any circuit of G is obtained. Now consider a circuit C^{\prime} in $G^{\prime \prime}$ not contained in G. Evidently it consists of an arc R_{1} from a to u_{1} in L_{1}, the edge h and an $\operatorname{arc} R_{2}$ from u_{2} to a in L_{2}. Any diagonal arc of C^{\prime} joins either two vertices of R_{1}, or two vertices of R_{2}. As L_{1} is a lobe, there exists an arc R_{1}^{\prime} joining a and u_{1} in L_{1} and having no vertex in common with R_{1} except for a and u_{1}. The arcs R_{1}, R_{1}^{\prime} form a circuit C_{1} in L_{1}; any diagonal arc of C joining two vertices of R_{1} is also a diagonal arc of C_{1} and any two such arcs which would be topologically crossing in $G^{\prime \prime}$ would be topologically crossing also in G. Analogously for R_{2}. Finally, a diagonal arc of C joining two vertices of R_{1} and a diagonal arc of C joining two
vertices of R_{2} cannot evidently be topologically crossing. Therefore $G^{\prime \prime}$ has also Hadwiger number 3, which is a contradiction with the maximality of G.

Lemma 3. Let G be a graph of Hadwiger number 3 with n vertices. Let u be its vertex and G_{0} the graph obtained from G by deleting u. Let G_{0} be a connected graph with p lobes. Then u is joined in G at most with $p+1$ vertices.

Proof. First assume that three vertices of a lobe L of G_{0} are joined with u in G. Then there exists a circuit in this lobe containing all of them; it can be contracted onto a triangle, whose vertices are these three vertices. This triangle together with u and the edges joining u with its vertices form a complete graph with four vertices and $\eta\left(G_{0}\right) \geqq 4$, which is a contradiction. Therefore u can be joined at most with two vertices of the same lobe. Now let u be joined with two vertices v_{1}, v_{2} of a lobe L, none of which is a cut-vertex. If there exists at least on vertex v_{3} in G_{0} which is joined with u in G and different from v_{1} and v_{2}, then let a be the cut-vertex belonging to L and separating v_{3} from v_{1} and v_{2}. In L there exists a circuit containing v_{1}, v_{2} and a. The subgraph of G consisting of this circuit, of the edges $u v_{1}, u v_{2}, u v_{3}$ and of an arc joining a and v_{3} in G_{0} (none of whose edges is in L) can be contracted onto a complete graph with four vertices. Therefore if G_{0} has cut-vertices, at most three vertices of G_{0} are joined with u in G and two of them belong to one lobe, not being cut-vertices, the graph G has not the assumed property. We shall continue by induction with respect to p. For $p=1$ the assertion holds, because G_{0} consists of one lobe and we have proved that no three vertices of one lobe can be joined with u in G. Let $r \geqq 2$, let the assertion hold for $p<r$. If we delete one lobe L except for the cut vertices in it from G_{0} so that the resulting graph G_{1} is connected (this is always possible), then G_{1} has $r-1$ lobes and u is joined in G with at most r vertices of G_{1}. Now at most.one vertex of L which is no cut-vertex may be joined with u. The lobe L contains only one cut-vertex which is in G_{1} (because it is a common vertex of L and some other lobe), thus at most $r+1$ vertices of G_{0} can be joined in G with u.

Now we shall prove

Theorem 1. Let $\lambda_{k}(n)$ be the maximal number of edges of a graph G of Hadwiger number k with n vertices. Then

$$
\lambda_{3}(n)=2 n-3
$$

for any positive integer $n \geqq 2$.
Proof. We shall prove the assertion by induction. The graphs with two or three vertices evidently cannot be contracted onto a complete graph with four vertices. The maximal number of edges of a graph with $n=2$ vertices is $2 n-3=1$, the maximal number of edges of a graph with $n=3$ is $2 n-3=3$. For $n=4$ only the complete graph with 4 vertices has Hadwiger number 4, no other can be contracted onto it.

Thus the graph of Hadwiger number 3 with four vertices and the maximal possible number of edges is the graph obtained from the complete graph with four vertices by deleting one edge. Now let $n=r \geqq 5$ and let the assertion hold for $2 \leqq n<k$. Let G be a graph with k vertices and $\lambda_{3}(r)$ edges for which $\eta(G)=3$. Delete one vertex u from G and denote the obtained graph by G_{0}. According to Lemma $2 G_{0}$ is connected. According to Lemma 3 the number of vertices of G_{0} joined by edges with u in G is at most $p+1$, where p is the number of lobes of G_{0}. Let the lobes of G_{0} be L_{1}, \ldots, L_{p}, let l_{i} be the number of vertices of L_{i} for $i=1, \ldots, p$. For the number $r-1$ of vertices of G_{0} we have

$$
\begin{equation*}
r-1=\sum_{i=1}^{p} l_{i}-p+1 \tag{1}
\end{equation*}
$$

Any lobe of G_{0} is a graph with Hadwiger number not exceeding 3 (because this property is evidently hereditary). According to the induction assumption the number of edges of L_{i} does not exceed $2 l_{i}-3$ for $i=1, \ldots, p$. For the number m_{0} of edges of G_{0} we have

$$
m_{0} \leqq \sum_{i=1}^{p}\left(2 l_{i}-3\right)=2 \sum_{i=1}^{p} l_{i}-3 p
$$

As u is joined with not more than $p+1$ vertices of G_{0}, for the number m of edges of G we have

$$
m \leqq m_{0}+p+1 \leqq 2 \sum_{i=1}^{p} l_{i}-2 p+1
$$

From (1) we have

$$
\sum_{i=1}^{p} l_{i}=r+p-2
$$

therefore

$$
m \leqq 2 r-3
$$

We have proved that $2 n-3$ is the upper bound for the number of edges of a graph with Hadwiger number 3 with n vertices. It remains to prove that for every $n \geqq 2$ this bound is attained. For any given $n \geqq 2$ we construct the "fan graph" F_{n} as follows. The vertices of F_{n} are v_{1}, \ldots, v_{n} and its edges are $v_{i} v_{i+1}$ for $i=1, \ldots, n-1$ and $v_{1} v_{j}$ for $j=3, \ldots, n$. If $n>2$, a contraction of any edge leads either to F_{n-1}, or to the graph with two lobes isomorphic to F_{r} with $2 \leqq r<n$. If $n=2$, then F_{2} is a graph consisting of two vertices and one edge. Thus by induction one can prove that F_{n} cannot be contracted onto a complete graph with four vertices, q.e.d.

In the end we shall consider also $\lambda_{1}(n)$ and $\lambda_{2}(n)$. Any graph containing at least one edge can be contracted onto a complete graph with two vertices. Thus $\eta(G)=1$ if and only if G contains no edges and

$$
\lambda_{1}(n)=0
$$

Any graph containing at least one circuit can be contracted onto a complete graph with three vertices. Thus $\eta(G)=2$ if and only if G is a forest with at least in edge and

$$
\lambda_{2}(n)=n-1
$$

Comparing $\lambda_{1}(n), \lambda_{2}(n), \lambda_{3}(n)$ leads us to a conjecture.
Conjecture. For the maximal number $\lambda_{k}(n)$ of edges of a graph of Hadwiger number k with n vertices we have

$$
\lambda_{k}(n)=(k-1) n-\binom{k}{2}
$$

for any two positive integers $k, n \geqq 2$.

II.

The other problem which will be studied here is the following one:
Which is the maximal number of edges of a connected undirected graph with n vertices, none of whose spanning trees has more than k terminal edges?

We shall denote this number by $\tau(n, k)$. We shall give the solution for some special cases, namely for $k=2, k=3, k=n-3, k=n-2, k=n-1$. We study graphs without loops and multiple edges.

Evidently we can define neither $\tau(n, 1)$ nor $\tau(n, n)$, because a spanning tree of a graph with n vertices has at least two and at most $n-1$ terminal edges.

Before investigating concrete values of k, we shall introduce an auxiliary concept.
If G_{0} is a connected subgraph of G, then the degree of G_{0} in G is the number of vertices of G not belonging to G_{0} which are joined with a vertex of G_{0}. If G_{0} consists only of one vertex, its degree is equal to the degree of this vertex.

Now we shall prove a lemma.
Lemma 4. Let G be a connected undirected graph. Then the maximal number of terminal edges of a spanning tree of G is equal to the maximal degree of a connected subgraph of G.

Proof. Let G_{0} be a connected subgraph of G with the maximal degree k. Let u_{1}, \ldots, u_{k} be the vertices not belonging to G_{0} and joined by edges with vertices of G_{0}. Choose a spanning tree T_{0} of G_{0}. Then for any $i=1, \ldots, k$ choose an edge e_{i} joining u_{i} with a vertex of G_{0}. The graph T_{0}^{\prime} consisting of all vertices of G_{0}, vertices u_{1}, \ldots, u_{k}, all edges of G_{0} and all edges e_{1}, \ldots, e_{k} is a tree in which e_{1}, \ldots, e_{k} are terminal edges. This tree T_{0}^{\prime} is a subtree of a spanning tree T of G which has also at least k terminal edges. (Evidently the number of terminal edges of a subtree of a tree T is less than or equal to the number of terminal edges of T.) On the other hand, let l
be the maximal number of terminal edges of a spanning tree of G. Let T_{1} be a spanning tree of G with l terminal edges. Let G_{1} be the subgraph of G generated by all vertices which are not terminal in T_{1}. Then G_{0} has the degree l.

Now we shall prove theorems on the numbers $\tau(n, k)$.

Theorem 2. $\tau(n, 2)=n$ for every $n \geqq 3$.
This assertion is evident; we leave the proof to the reader.

Theorem 3. $\tau(n, 3)=n+2$ for every $n \geqq 4$.
Proof. Let G be a graph with n vertices ($n \geqq 4$) such that none of its spanning trees has more than three vertices. At first assume that G has a Hamiltonian circuit C consisting of the vertices u_{1}, \ldots, u_{n} and the edges $u_{i} u_{i+1}$ for $i=1, \ldots, n-1$ and $u_{n} u_{1}$. Assume that there exists an edge $u_{i} u_{j}$ where $|i-j| \geqq 3$ (the difference is taken modulo n). Without any loss of generality let $i=1$; then $j \neq 2, j \neq 3, j \neq n-1$, $j \neq n$. Let T_{0} be a subgraph of G consisting of the vertices $u_{1}, u_{2}, u_{j-1}, u_{j}, u_{j+1}, u_{n}$ and of the edges $u_{1} u_{2}, u_{1} u_{n}, u_{1} u_{j}, u_{j-1} u_{j}, u_{j} u_{j+1}$; it is a tree in which all edges except $u_{1} u_{j}$ are terminal, therefore with four terminal edges. The tree T_{0} is a subtree of some spanning tree T of G which has at least four vertices, which is a contradiction. Therefore any edge not belonging to C is $u_{i} u_{i+2}$ for some $i, 1 \leqq i \leqq n$ (the sum $i+2$ is taken modulo n). Let there exist an edge $u_{1} u_{3}$ (without any loss of generality) and some other edge $u_{j} u_{j+2}$ (where $j \neq 1$). Evidently $j \neq 3, j \neq n-1$, because otherwise u_{j} or u_{j+2} would have the degree at least four. Assume $4 \leqq j \leqq n-2$. The there exists a subgraph T_{1} of G consisting of the vertices u_{1}, \ldots, u_{j+2} and of the edges $u_{1} u_{3}, u_{j} u_{j+2}$ and $u_{i} u_{i+1}$ for $i=2, \ldots, j$. It is a tree with four terminal edges $u_{1} u_{3}, u_{2} u_{3}, u_{j} u_{j+1}, u_{j} u_{j+2}$ and we obtain a similar contradiction as in the preceding case. Therefore an edge of G not belonging to C and different from $u_{1} u_{3}$ can be only $u_{2} u_{4}$ or $u_{n} u_{2}$; they cannot exist both, because u_{2} would have the degree at least four. Therefore G has at most $n+2$ edges. Now assume that G has no Hamiltonian circuit. Let C_{0} be the circuit of the maximal length l in G, let its vertices be v_{1}, \ldots, v_{l} and its edges $v_{i} v_{i+1}$ for $i=1, \ldots, l-1$ and $v_{l} v_{1}$. Let there exist two vertices w_{1}, w_{2} not belonging to C and joined by edges with vertices of C. If the length of C is at least 5 , we can choose an edge e of C such that w_{1} and w_{2} are joined with the vertices v_{i}, v_{j} which are consequently not incident with e. The tree whose edges are all edges of C except e and $v_{i} w_{1}, v_{j} w_{2}$ (we may have $v_{i}=v_{j}$) is a subtree of G with four terminal edges. Thus if the length of C is at least 5 , there may exist only one vertex w not belonging to C and joined with a vertex of C. For the edges joining two vertices of C and not belonging to C the same holds as in the case of a Hamiltonian circuit. So assume that there are two such edges; let one of them (without any loss of generality) be $v_{1} v_{3}$ and the other $v_{i} v_{2}$. There exist two subtrees of G with three terminal edges not containing w, namely T_{1} with the edges $v_{i} v_{i+1}$ for $i=2, \ldots, l-1$ and $v_{1} v_{3}$ and T_{2}
with the edges $v_{i} v_{i+1}$ for $i=3, \ldots, l-1, v_{l} v_{1}, v_{l} v_{2}$. If w is joined with some v_{i}, where $4 \leqq i \leqq l-1_{\imath}$ then by adding the vertex w and the edge $u_{i} w$ to T_{1} or to T_{2} we obtain a tree with four terminal edges. If w is joined with v_{3} or v_{l}, then by adding w and $v_{3} w$ or $v_{1} w$ to T_{1} or T_{2} respectively we obtain also a tree with four terminal edges. If w is joined with v_{1} or v_{2}, then v_{1} or v_{2} has the degree at least four. We have proved that if there are two edges joining vertices of C and not belonging to C (for C of the length at least 5), then C must be a Hamiltonian circuit of G. Now assume that there exists one edge joining two vertices of C and not belonging to C; analogously to the case when C is Hamiltonian this edge is (without any loss of generality) $v_{1} v_{3}$. Then there exist two subtrees of G not containing vertices outside of C with three terminal edges, namely T_{1} with the edges $v_{i} v_{i+1}$ for $i=4, \ldots, l-1, v_{l} v_{1}, v_{1} v_{2}, v_{1} v_{3}$ and T_{2} with the edges $v_{i} v_{i+1}$ for $i=2, \ldots, l-1, v_{1} v_{3}$. If w is joined with v_{i} for $4 \leqq i \leqq$ $\leqq l-1$, then by adding w and $v_{i} w$ to T_{1} or T_{2} we obtain a tree with four terminal edges. If w is joined with v_{1} or v_{3}, then by adding w and $v_{1} w$ or $v_{3} w$ to T_{1} or T_{2} respectively we obtain also a tree with four terminal edges. Thus w can be joined only with u_{2}. If there are two vertices x_{1}, x_{2} joined with w and not belonging to C, then by adding the edges $v_{2} w, w x_{1}, w x_{2}$ to T_{1} or T_{2} we obtain again a tree with four terminal edges. Thus w can be joined only with one vertex w_{1} not belonging to C; analogously w_{1} can be joined only with one vertex w_{2} not belonging to C and different from w etc.; therefore the subgraph of G generated by v_{2} and all vertices not belonging to C is an arc. We have proved that the subgraph generated by the vertices of C has at most $l+2$ edges, if C is Hamiltonian, or at most $l+1$ edges, if there are some vertices not belonging to C. In the former case C is Hamiltonian and $l=n$, thus $l+2=n+2$. In the latter case the number of vertices not belonging to C is $n-l$ and, as they generate an arc, the number of edges joining vertices not belonging to C is $n-l-1$ and there is one edge joining a vertex not belonging to C, namely w, with a vertex of C, namely v_{2}. The total number of edges of G is at most $n+2$. From the proof it follows that this bound can be always attained. It remains to discuss the case when the length of the longest circuit in G is less than 5 . If it is 3 , then any circuit of G is a lobe of G, therefore any lobe of G is either a triangle, or a bridge. Assume that two lobes L_{1}, L_{2} of G are triangles. If they have a common vertex, it has the degree at least 4 , which is impossible. Otherwise we take an arc joining a vertex v_{1} of L_{1} with a vertex v_{2} of L_{2} and having no edge in common with L_{1} and L_{2}. The tree consisting of this arc, of two edges from L_{1} incident with v_{1} and of two edges of L_{2} incident with v_{2} has four terminal edges, namely the edges of L_{1} and L_{2} incident with v_{1} or v_{2}. Therefore G can have at most one lobe which is a triangle, the others being bridges. The cyclomatic number of G is at most 1 , thus G has at most n edges. If the length of the longest circuit in G is 4 , then any lobe of G is either a bridge or a triangle, or it consists of a system of at least two edge-disjoint arcs of the lengths 1 or 2 joining two vertices a and b. Analogously to the preceding case we can prove that there is at most one lobe which is not a bridge. According to the assumption it cannot be a triangle, thus it is of the last type. The number of paths joining a and b
can be at most three, otherwise a and b would have the degree greater than three. If they are two or three, the cyclomatic number of G is 1 or 2 respectively, and the number of vertices of G is n or $n+1$, respectively.

```
Theorem 4. \(\tau(n, n-3)=\frac{1}{2} n^{2}-\frac{5}{2} n+5\) for every \(n \geqq 5\).
```

Proof. Let G be a graph with n vertices ($n \geqq 5$) such that none of its spanning trees has more than $n-3$ terminal edges. Investigate the complement \bar{G} of \boldsymbol{G}. The graph \bar{G} has the following properties:
(a) the degree of any vertex of \bar{G} is at least two;
(b) the diameter of \bar{G} is at most two;
(c) the complement G of \bar{G} is connected.

If \bar{G} had not the property (a), there would exist some vertex u of \bar{G} of the degree 0 or 1 . This vertex would have the degree $n-1$ or $n-2$ in G, therefore the star with the center u would be a subtree of G with more than $n-3$ terminal edges. If \bar{G} had not the property (b), then there would exist two vertices u_{1}, u_{2} of \bar{G} with the distance greater than two. There would not exist any vertex joined with both u_{1} and u_{2} and these two vertices also would not be joined together. This means that in G any vertex would be joined at least with one of the vertices u_{1}, u_{2} and there would exist the edge $u_{1} u_{2}$. For any vertex of G different from u_{1} and u_{2} we choose one edge joining it with u_{1} or u_{2}; these edges together with $u_{1} u_{2}$ would form a spanning tree of G with $n-2$ terminal edges. The condition (c) follows from the text of the problem, because only connected graphs have spanning trees.

We can construct a graph G_{0} satisfying the conditions (a), (b), (c) and having $2 n-5$ edges. This is the graph whose vertex set is $u_{1}, u_{2}, v_{1}, \ldots, v_{n-4}, w_{1}, w_{2}$ and whose edges are $u_{1} v_{i}$ and $u_{2} v_{i}$ for $i=1, \ldots, n-4$, and further $u_{1} w_{1}, w_{1} w_{2}, u_{2} w_{2}$. This graph G_{0} contains. n vertices and $2 n-5$ edges. We shall prove that there does not exist any graph with less than $2 n-5$ edges satisfying the conditions (a), (b), (c). Assume that there exist a graph G_{1} with n vertices and less than $2 n-5$ edges ($n \geqq 5$) satisfying the conditions. At least one of the vertices of G_{1} must have the degree less than four; in the opposite case G_{1} would contain at least $2 n$ edges. Thus also the vertex connectivity degree of G_{1} is at most 3 . Let R be a cut set of G_{1} with the minimal number of vertices. At first assume that $|R|=1$, thus $R=\{a\}$, where a is some cut vertex. If u, v are two vertices of G_{1} separated by a, then they must be both joined with a, because their distance cannot be greater than two and any arc joining them must contain a. As these vertices were chosen arbitrarily, this implies that a is joined with all other vertices of G_{1}. Then a is joined with no other vertex in the complement of G_{1} and is an isolated vertex; therefore this complement is not connected, which contradicts (c). Assume $|R|=2$, thus $R=\left\{a_{1}, a_{2}\right\}$. Let K_{1}, \ldots, K_{l} be the connected components of the graph obtained from G_{1} by deleting the vertex set R and all edges incident to it. Assume that in K_{1} (without any loss of generality)
there exists a vertex u_{1} joined with a_{1} and not with a_{2} and a vertex u_{2} joined with a_{2} and not with a_{1}. Let v be a vertex of some K_{i} for $i \neq 1$. It must have the distance at most 2 from both u_{1} and u_{2}, therefore it must be joined with both a_{1} and a_{2}. As v was chosen quite arbitrarily, any vertex of $\bigcup_{i=2} K_{i}$ must be joined with both a_{1} and a_{2}. Let m be the total number of vertices of $\bigcup_{i=2} K_{i}$; then the number of edges not incident with vertices of K_{1} is at least $2 m$. The component K_{1} contains $n-m-2$ vertices. It must be connected, thus it contains at least $n-m-3$ edges. Each vertex of K_{1} must be joined with some vertex of R, therefore there are at least $n-m-2$ edges joining vertices of K_{1} with vertices of R. The graph G_{1} has then at least $2 m+$ $+(n-m-2)+(n-m-3)=2 n-5$ edges. Now assume that in K_{1} there is a vertex u_{1} joined with a_{1} and not with a_{2}, but all vertices of K_{1} are joined with a_{1}. Then in K_{i} for each $i=2, \ldots, l$ also all vertices are joined with a_{1} and there may also exist in it some vertices joined with a_{1} and not with a_{2}. Let M be the set of vertices of G_{1} not belonging to R joined with a_{1} and not joined with a_{2}. Let M_{i} for $i=$ $=1, \ldots, l$ be the intersection of M with the vertex set of K_{i}. Consider a connected component of the subgraph of G_{1} generated by the set M_{i}; let p be its number of vertices. As this component C is connected, it contains at least $p-1$ edges. As any of its vertices is joined with a_{1}, we have further p edges incident with vertices of this component. This component C is a subgraph of some K_{i} and evidently a proper subgraph; otherwise no vertex of K_{i} would be joined with a_{2} and a_{1} would be a cut vertex separating vertices of K_{i} from other vertices of G_{1}. Therefore there exists at least one edge joining a vertex of C with some other vertex of K_{i}. We have at least $2 p$ edges incident with vertices of C and with no other vertices of M. Therefore if $|M|=$ $=q$, then there exist $2 q$ edges incident with vertices of M (this number was obtained as a sum over all such components C). Any of the vertices not belonging to $M \cup R$ are joined with both a_{1} and a_{2}. As the number of vertices not belonging to $M \cup R$ is $n-q-2$, we have $2 n-2 q-4$ edges joining these vertices with the vertices of R. Thus G_{1} has at least $2 q+(2 n-2 q-4)=2 n-4$ edges. If all vertices not belonging to R are joined with both a_{1} and a_{2}, the graph G_{1} has evidently also at least $2 n-4$ edges.

Finally assume that $|R|=3$, thus $R=\left\{a_{1}, a_{2}, a_{3}\right\}$. We shall prove that in each of the components K_{1}, \ldots, K_{l}, except at most one, either there exists a vertex joined with all vertices of R, or there exist two vertices, each of which is joined with two vertices of R. Assume that K_{1} has not this property; i.e. that at most one vertex of K_{1} is joined with two vertices of R, any other vertex being joined exactly with one vertex of R. If each vertex of K_{1} is joined only with one vertex of R, there must exist three vertices u_{1}, u_{2}, u_{3} of K_{1} so that u_{i} is joined with a_{i} for $i=1,2,3$, and with no other vertex of R (otherwise the vertex connectivity degree of G_{1} would be less than three). Any vertex of K_{i} for $i=2, \ldots, l$ must have the distance at most two from al three vertices u_{1}, u_{2}, u_{3}, therefore it must be joined with all the vertices a_{1}, a_{2}, a_{3}. If there
exists a vertex v of K_{1} joined with two vertices a_{1}, a_{2} (without any loss of generality) of R and not with a_{3} and all other vertices are joined only with one vertex of R each, then there exists a vertex u_{3} of K_{1} joined with a_{3} and with no other vertex of R. Any vertex of $K_{i}(i=2, \ldots, l)$ must have the distance from both v and u_{3} at most 2 , therefore it must be joined with a_{3} and one of the vertices a_{1}, a_{2}. If this K_{i} contains only one vertex, it must be joined with all vertices of R, because we have assumed that the vertex connectivity degree of G_{1} is 3 and therefore each vertex has the degree at least 3. If K_{i} contains two different vertices w_{1}, w_{2}, any of them must be joined with a_{3} and one of the vertices a_{1}, a_{2}. Any of the components $K_{i}(i=1, \ldots, l)$ must contain at least $k_{i}-1$ edges, where k_{i} is the number of its vertices, and there are at least k_{i} edges joining its vertices with vertices of R; therefore there are at least $2 k_{i}-1$ edges incident with vertices of K_{i}. But if for some K_{i} this number is exactly $2 k_{i}-1$, this means that any vertex of K_{i} is joined exactly with one vertex of R; then any vertex of K_{j} for $j \neq i$ is joined with all vertices of R. Then the graph G_{1} contains at least $3\left(n-k_{i}-3\right)+2 k_{i}-1=3 n+k_{i}-10$ vertices, which is more than $2 n-5$, because $n \geqq 5$. If exactly one vertex of K_{i} is joined with two vertices of R and any other vertex of K_{i} is joined only with one vertex of R, then there are at least $2 k_{i}$ edges incident with vertices of K_{i} and any vertex of K_{j} for $j \neq i$ must be joined at least with two vertices of R; if such K_{j} consists only of one vertex, it is joined with all vertices of R, otherwise there exists at least one edge of K_{j}. Thus there are at least $2 k_{j}+1$ edges incident with vertices of K_{j} for $j \neq i\left(k_{j}\right.$ is the number of vertices of $\left.K_{j}\right)$ and the total number of edges of G_{1} is at least $2 n-5$. If in each K_{i} either there are two vertices joined with two vertices of R, or there is a vertex joined with all vertices of R, then there are $2 k_{i}+1$ edges incident with vertices of K_{i} and G_{1} has at least $2 n-4$ edges. We have proved that there does not exist any graph satisfying (a), (b), (c) and having less than $2 n-5$ edges. The existence of such a graph with exactly $2 n-5$ edges had been proved before. The graph G with the property that none of its spanning trees has more than $n-3$ terminal edges and with the maximal possible number of edges is a complement of such a graph. Therefore its number of edges is $\frac{1}{2} n(n-1)-$ $-(2 n-5)=\frac{1}{2} n^{2}-\frac{5}{2} n+5$, q.e.d.

Theorem 5. $\tau(n, n-2)=\frac{1}{2} n^{2}-n$ for n even, $\tau(n, n-2)=\frac{1}{2} n^{2}-n-\frac{1}{2}$ for n odd, $n \geqq 4$.

Proof. The only tree with n vertices and $n-1$ terminal edges is a star. A star can be a spanning tree of a graph G if and only if G contains a vertex u joined with all other vertices, i.e. of the degree $n-1$. Therefore we look for a graph G with n vertices with the maximal number of edges, in which no vertex has the degree $n-1$. For n even such a graph is a regular graph of the degree $n-2$; it contains $\frac{1}{2} n^{2}-n$ edges. For n odd such a graph does not exist, but there exists a graph, one of whose vertices has the degree $n-3$ while all others have the degree $n-2$. This is evidently the required graph and its number of edges is $\frac{1}{2} n^{2}-n-\frac{1}{2}$.

Theorem 6. $\tau(n, n-1)=\frac{1}{2} n^{2}-\frac{1}{2} n$ for every $n \geqq 3$.
Proof is easy, it is left to the reader.
Remark. The English terminology of the graph theory used in this paper is that of [1].

References

[1] O. Ore: Theory of Graphs. Providence 1962.
[2] В. Г. Визинг: Некоторые нерешенные задачи в теории графов. Успехи мат. наук 23 (1968), 117-134.

Author's address: 46117 Liberec, Studentská 5 (Vysoká škola strojní a textilnin).

