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AN APPLICATION OF HALLS' THEOREMS TO MATRICES 

ANTONIN VRBA, Praha 

(Received July 10, 1972) 

INTRODUCTION 

It is the purpose of this paper to simplify proofs and to extend results of K. Culik's 
paper [1] in which matrices which are singular (non-singular) together with all the 
matrices of the same combinatorial structure of zero elements are characterized. The 
well-known theorem of P. Hall concerning the existence of a system of distinct repre
sentatives of a system of sets and its quantitative refinement of M. Hall, Jr. are 
exploited. 

PRELIMINARIES 

Let A = (aik) be a matrix the elements of which belong to a given integral domain I 
of the characteristic h. Denote by P(A) the class of all the matrices B = (bik) over I 
of the same size as A such that, for each pair of indices, aik = 0 if and only if bik = 0. 

Let A be square. Then it is said to be absolutely singular if each matrix from P(A) 
is singular. If P(A) consists entirely of non-singular matrices then A is said to be 
absolutely non-singular. A is said to be pseudo-triangular if it arises from a triangular 
matrix with non-zero elements in the main diagonal by permutation of its rows and 
columns. 

Let n be a positive integer. Denote N = {1, 2,..., n}. 
Let A be an n x n matrix. Then for each permutation {pl9 p2,..., pn} of IV the 

n 

product Yl aiPi 1s called a diagonal product of A. Let r,ceN. Denote by Arc the 
..-=1 

submatrix obtained from A by deleting the r-th row and the c-th column. Let 0 4= 1* g 
g N9 0 4= C g N. Denote by ARC the submatrix of A obtained from A by deleting 
the rows and columns with indices from N — R and N — C respectively. Thus 
-4 — ANN9 Arc =- AN-{r},tf-{Cy 

Let S = {Sl9 S29..., Sn} be a system of sets. An n-tuple {sl9 sl9..., sn} such that 
st 6 St for each i e N is usually called a system of distinct representatives of S. Denote 
the cardinality of a set Z by \Z\ and t = min \St\. 
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A system S possesses a system of distinct representatives if and only if | U $i\ <=. 

= |K| for each K g N. (P. Hall 1935.) ieK 

Assume a system S possessing a system of distinct representatives. If t is infinite 
then there exist at least t systems of distinct representatives of S. If t is finite and 
t > n then there exist at least t\J(t — n)\ systems of distinct representatives of S. 
For t _ n there exist at least t\ systems of distinct representatives of S. (M. Hall, 
Jr. 1948.) 

Proofs of these well-known theorems are available e.g. in [2] or [3]. 

Given an n x n matrix A, denote by S(A) the system {S±(A), S2(A),..., Sn(A) 
where St(A) = {k e N | aik 4= 0}. Evidently, systems of distinct representatives of 
S(A) are in one-to-one correspondence with non-zero diagonal products of A 
Notice that ARC = 0 if and only if C g N - U St(A). 

ieR 

If h = 2 the concepts of absolute singularity (absolute non-singularity) and 
singularity (non-singularity) merge and so this case is not of considerable interest. 
Moreover, the considerations in what follows are not valid for h = 2. Thus assume 
henceforward h 4= 2. 

COMBINATORIAL CHARACTERIZATIONS 

The following properties of an n x n matrix A are equivalent: 

1. A is absolutely singular. 

2. Each diagonal product of A is zero. 

3. A contains a zero p x q submatrix such that p + q > n. 

Proof. 1 -> 2. The case n = 1 being obvious, suppose that n > 1 and that the 
implication is true for (n — 1) x (n — 1) matrices. Let some diagonal product of 

n 

A, say Yl aij>o b e noi1-zero. Then, according to the induction hypothesis, there 
i = i 

exists B e P(-A) such that det BnPn 4= 0. It is easy to see from the expansion of det 
B by the n-th row that non-zero elements of this row could have been chosen such 
that det B 4= 0. 

In the case h = 0 the following simpler proof is valid: If \\ aiPi 4= 0 then put 
i = l 

bipi = 1 for each i e N and bik = 0 or bik = 2 otherwise in such a way that B = 
= (bik) e P(A). Evidently, det B is odd. 

2 «-> 3. (This equivalence is due to G. Frobenius or D. Kdnig.) Each diagonal pro
duct of A is zero if and only if the system 5(A) does not possess a system of distinct 
representatives. According to the theorem of P. Hall, this takes place if and only 
if |US,:(A)| < |K| for some K g N. Further, this is equivalent to the existence of 

t*K 
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0 4= K g 1V such that N - U5,<-4) * 0 and \K\ + |N - \JSt(A)\ > n, the sub-
teK ieK 

matrix AKN„ u StiA) being zero. 

2 -> 1. If each diagonal product of A is zero then so is each diagonal product of 
each B e P(A), hence det B = 0. 

The following properties of a square matrix A are equivalent: 

1. A is absolutely non-singular. 
2. Exactly one diagonal product of A is non-zero. 
3. A is pseudo-triangular. 

Proof. Denote by n the order of A. 

1 -» 2. The case n = 1 being obvious, suppose that n > 1 and that the implication 
is true for (n - 1) x (n — 1) matrices. If A is absolutely non-singular then there is 
a row of A containing exactly one non-zero element, say aik. (Otherwise it is easy to 
construct a matrix B e P(A) such that all its row sums are zero.) Then det A = 
= ± aik det Aik9 hence Aik is absolutely non-singular and, by the induction hypothesis, 
exactly one diagonal product of Aik is non-zero. It follows that A has exactly one 
diagonal product as well. 

2 -> 3. The case n = 1 being obvious, suppose that n > 1 and that the implication 
is true for (n — 1) x (n — 1) matrices. Assertion 2 is equivalent to the fact that S(A) 
possesses exactly one system of distinct representatives. According to the theorem 
of M. Hall, there exists i e N such that St(A) consists of exactly one element, say fc, 
i.e., aik is the only non-zero element of the i-th row of A. Exactly one diagonal product 
of Aik being non-zero, Aik is pseudo-triangular by the induction hypothesis. Ac
cordingly, A is pseudo-triangular as well. 

3 -> 1. Obvious. 

ALGEBRAIC CHARACTERIZATIONS 

Let r < n be positive integers. Then the following properties of an n x n matrix 
are equivalent: 

1. A is absolutely non-singular. 
2. For each BeP(A) there exist Q * R c N, 0 4 - C c N , \R\ = \c\ such that 

detBRCdetBN„RN_C # 0 and either dctBRQdetBN-RfN->Q = 0 for each 
Q <= -V, |6 | - \R\, 6 * C or det BQC det BN„QtN„c = 6 for each Q cz N, 

\Q\ - |c|, e * R-
3. A arises by permutations of rows and columns from an A' such that for each 

matrix from P(A') the product of its r x r minor by the complementary minor 
is non-zero if and only if these minors are principal 

290 



4. A arises by permutations of rows and columns from an A' such that for each 
matrix from P(A') the product of its proper minor by the complementary 
minor is non-zero if and only if these minors are principal. 

Proof. 1 -» 4. A is pseudo-triangular according to the above combinatorial 
characterization. The triangular matrix A' with non-zero diagonal elements has the 
property 4. 

4 -» 3, 3 -» 2. Obvious. 

2 -* 1. The Laplace expansion yields 

det B = ±det BRC det BN-RN„C * 0 for each B e P(A) . 

In [1], K. Culik has conjectured that algebraic characterizations of the above type 
of absolutely non-singular matrices remain true even when the conditions concerning 
all the matrices from P(A) (P(A')) are restricted to the matrix A(A') only. This is 
confirmed in the following special case. 

Let r < nbe positive integers and A be a hermitian positive semi-definite (complex-
valued) n x n matrix. Suppose that for each R c N, C c: N, \R\ = \C\ = r it 
holds det ARC det AN_RN_C #= 0 if and only if R = C. Then A is diagonal. 

Proof. In the Hadamard inequality 

det ARR det AN_RN_R = det A , 

equality is attained for each.jR c= N, \R\ = r. Accordingly, the matrices ARfN-R> 
^N-R,R

 a r e z er° for each such # (v. [4]). Hence the off-diagonal elements of A are 
zero. 
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