Časopis pro pěstování matematiky

Ladislav Nebeský
On the minimum degree and edge-connectivity of a graph

Časopis pro pěstování matematiky, Vol. 101 (1976), No. 2, 199--202
Persistent URL: http://dml.cz/dmlcz/117895

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON THE MINIMUM DEGREE AND EDGE-CONNECTIVITY OF A GRAPH

Ladislav Nebeský, Praha

(Received July 25, 1975)

Let G be a graph. We denote by $V(G)$ and $E(G)$ the vertex set of G and the edge set of G, respectively. If $v \in V(G)$, then we denote by $\operatorname{deg}_{G} v$ the degree of v in G. Moreover, we denote by $\delta(G)$ and $\Delta(G)$ the minimum degree of G and the maximum degree of G, respectively. If U is a nonempty subset of $V(G)$, then we denote by $\langle U\rangle_{G}$ the graph G^{\prime} such that $V\left(G^{\prime}\right)=U$ and

$$
E\left(G^{\prime}\right)=\{e \in E(G) ; e \text { is incident with no vertex in } V(G)-U\} .
$$

Let G be a nontrivial connected graph. We say that a set $S \subseteq E(G)$ is.a cut set of G, if the graph $G-S$ is disconnected. A cut set S with $|S|=n$ is referred to as an n-cut set. We denote by $\chi_{1}(G)$ the minimum integer k such that there is a k-cut set of G; the integer $\varkappa_{1}(G)$ is called the edge-connectivity of G. (The terms not defined here can be found in M. Behzad and G. Chartrand [1].)

It is obvious that for any nontrivial connected graph $G, \chi_{1}(G) \leqq \delta(G)$. A sufficient condition for $\varkappa_{1}(G)=\delta(G)$ is due to D. R. Lick [3]; note that Lick's result is an analogue of R. Halin's theorem on the vertex-connectivity [2]. In the present note it will be shown that an analysis of a nontrivial connected graph from the point of view of its edge-connectivity can lead to an upper bound for the minimum degree. In fact, we obtain an upper bound for a more general characteristic: if G is a graph and U is a nonempty subset of $V(G)$, then we denote

$$
\operatorname{deg}_{G} U=\min \left\{\operatorname{deg}_{G} u ; u \in U\right\}
$$

Obviously, $\delta(G)=\operatorname{deg}_{G} V(G)$.
Let G be a nontrivial connected graph, and let U be a nonempty subset of $V(G)$. We denote $f_{G}(U)=\Delta\left(G_{0}\right)$, where G_{0} is the spanning subgraph of $\langle U\rangle_{G}$ with the property that $e \in E\left(G_{0}\right)$ if and only if $e \in E\left(\langle U\rangle_{G}\right)$ and $x_{1}(G-e)=x_{1}(G)$. We denote by $h_{G}(U)$ the minimum integer i such that there is an i-cut set R_{0} of G with
the property that for at least one component F_{0} of the graph $G-R_{0}$ it holds that $V\left(F_{0}\right) \subseteq U$. Obviously, $x_{1}(G) \leqq h_{G}(U)$. It is clear that if U_{1} and U_{2} are subsets of $V(G)$ such that $\emptyset \neq U_{1} \subseteq U_{2}$, then $f_{G}\left(U_{1}\right) \leqq f_{G}\left(U_{2}\right)$ and $h_{G}\left(U_{2}\right) \leqq h_{G}\left(U_{1}\right)$. Denote $f_{G}=f_{G}(V(G))$. Clearly, $h_{G}(V(G))=x_{1}(G)$.

The following theorem is the main result of this note:

Theorem. Let G be a nontrivial connected graph, and let U be a nonempty subset of $V(G)$. Then

$$
h_{G}(U) \leqq \operatorname{deg}_{G} U \leqq \max \left(f_{G}(U), h_{G}(U)\right)
$$

Proof. It is obvious that for each $u \in U$, the set of edges incident with u in G is a cut set of G. Therefore, $h_{G}(U) \leqq \operatorname{deg}_{G} U$.

We shall prove the inequality $\operatorname{deg}_{G} U \leqq \max \left(f_{G}(U), h_{G}(U)\right)$. Clearly, there is a nonempty subset U_{0} of U such that $h_{G}\left(U_{0}\right)=h_{G}(U)$ and that for each nonempty subset U^{\prime} of $U,\left|U^{\prime}\right|<\left|U_{0}\right|$ implies $h_{G}\left(U^{\prime}\right)>h_{G}(U)$. Obviously, $U_{0} \neq V(G)$. We denote by F the graph $\left\langle U_{0}\right\rangle_{G}$. It is obvious that there is an $h_{G}(U)$-cut set R of G such that F is a component of $G-R$. It is easy to see that $E(F) \cap R=\emptyset$. Denote $n=\left|U_{0}\right|$. Obviously,

$$
\begin{equation*}
\operatorname{deg}_{G} U \leqq \operatorname{deg}_{G} U_{0} \leqq \Delta(F)+\left[\frac{h_{G}(U)}{n}\right] \leqq n-1+\frac{h_{G}(U)}{n} . \tag{1}
\end{equation*}
$$

(Note that if x is a real number, then $[x]$ denotes the maximum integer j such that $j \leqq x$.)

Let $n \leqq h_{G}(U)$. If $h_{G}(U)<\operatorname{deg}_{G} U$, then it follows from (1) that $h_{G}(U)$. $(n-1)<$ $<n(n-1)$, and thus $h_{G}(U)<n$, which is a contradiction. Hence $\operatorname{deg}_{G} U \leqq h_{G}(U) \leqq$ $\leqq \max \left(f_{G}(U), h_{G}(U)\right)$.

Let $h_{G}(U)<n$. From (1) it follows that $\operatorname{deg}_{G} U \leqq \Delta(F)$. We distinguish two cases:
(I) For each $e \in E(F), x_{1}(G-e)=x_{1}(G)$. Then $f_{G}(U) \geqq \Delta(F)$. Therefore, $\operatorname{deg}_{G} U \leqq \Delta(F) \leqq f_{G}(U) \leqq \max \left(f_{G}(U), h_{G}(U)\right)$.
(II) There exists $e \in E(F)$ such that $x_{1}(G-e) \neq x_{1}(G)$. Then there exists a $x_{1}(G)$-cut set S of G such that $e \in S$. Obviously, the graph $G-S$ has precisely two components, say G_{1} and G_{2}, and $E\left(G_{1}\right) \cap S=\emptyset=E\left(G_{2}\right) \cap S$. We denote by H the graph $G-U_{0}$. It is easy to see that $E(H) \cap R=\emptyset$. Next, we denote $V_{11}=U_{0} \cap$ $\cap V\left(G_{1}\right), \quad V_{12}=U_{0} \cap V\left(G_{2}\right), \quad V_{21}=V(H) \cap V\left(G_{1}\right), \quad$ and $\quad V_{22}=V(H) \cap V\left(G_{2}\right)$. Finally, we denote by

$$
E_{1}, \ldots, E_{5} \text {, and } E_{6} .
$$

the set of all $e \in R \cup S$ with the property that e is incident

| with | V_{11} and V_{21}, |
| :--- | :--- | :--- |
| with | V_{12} and V_{22}, |
| with | V_{11} and V_{12}, |
| with | V_{21} and V_{22}, |
| with | V_{11} and V_{22}, |
| with | V_{12} and V_{21}, |

respectively.
It is clear the sets $E_{1}, \ldots, E_{5}, E_{6}$ are mutually disjoint, $R=E_{1} \cup E_{2} \cup E_{5} \cup E_{6}$ and $S=E_{3} \cup E_{4} \cup E_{5} \cup E_{6}$. Since $E(F) \cap S \neq \emptyset$, we have $V_{11} \neq \emptyset \neq V_{12}$. Since $V(H) \neq \emptyset$, we have that either $V_{21} \neq \emptyset$ or $V_{22} \neq \emptyset$. Without loss of generality we assume that $V_{21} \neq \emptyset$. We distinguish two subcases:
(1) $V_{22}=\emptyset$. Then $E_{2}=E_{4}=E_{5}=\emptyset$. Therefore $S=E_{3} \cup E_{6}$. This implies that $h_{G}\left(V_{12}\right) \leqq \varkappa_{1}(G) \leqq h_{G}(U)$, which is a contradiction.
(2) $V_{22} \neq \emptyset$. Then both $E_{1} \cup E_{4} \cup E_{6}$ and $E_{2} \cup E_{4} \cup E_{5}$ are cut sets of G. Therefore, $\left|E_{1} \cup E_{4} \cup E_{6}\right| \geqq \varkappa_{1}(G)$ and $\left|E_{2} \cup E_{4} \cup E_{5}\right| \geqq \varkappa_{1}(G)$. Clearly, $E_{1} \cup$ $\cup E_{3} \cup E_{5}$ and $E_{2} \cup E_{3} \cup E_{6}$ are also cut sets of G. Since $h_{G}\left(V_{11}\right)>h_{G}(U)$ and $h_{G}\left(V_{12}\right)>h_{G}(U)$, we have $\left|E_{1} \cup E_{3} \cup E_{5}\right|>h_{G}(U)$ and $\left|E_{2} \cup E_{3} \cup E_{6}\right|>h_{G}(U)$. Thus $2|R|+2|S|=2 h_{G}(U)+2 \varkappa_{1}(G)<\left|E_{1} \cup E_{3} \cup E_{5}\right|+\left|E_{2} \cup E_{3} \cup E_{6}\right|+\mid E_{1} \cup$ $\cup E_{4} \cup E_{6}\left|+\left|E_{2} \cup E_{4} \cup E_{5}\right| \leqq 2\right| R|+2| S \mid$, which is a contradiction.

Hence the proof is complete.
Proofs of the following corollaries are omitted:

Corollary 1. Let G be a nontrivial connected graph. Then $\varkappa_{1}(G) \leqq \delta(G) \leqq$ $\leqq \max \left(f_{G}, x_{1}(G)\right)$.

Corollary 2. Let G be a nontrivial connected graph, and let U be a nonempty subset of $V(G)$. If $f_{G}(U) \leqq h_{G}(U)$, then $\operatorname{deg}_{G} U=h_{G}(U)$.

Corollary 3. Let G be a nontrivial connected graph, and let n be a positive integer such that $n \geqq x_{1}(G)$. Then there exists a vertex u of G such that $\operatorname{deg}_{G} u=n$ if and only if there exists a nonempty subset U of $V(G)$ such that $f_{G}(U) \leqq h_{G}(U)=n$.

Corollary 4. Let G be a nontrivial connected graph. Then $\delta(G)=x_{1}(G)$ if and only if there exists a nonempty subset U of $V(G)$ such that $f_{G}(U) \leqq h_{G}(U)=\varkappa_{1}(G)$.

Corollary 5. (D. R. Lick [3]). Let G be a nontrivial connected graph such that for each $e \in E(G), \chi_{1}(G-e)=\chi_{1}(G)-1$. Then $\delta(G)=\chi_{1}(G)$.

Note that an upper bound for the minimum degree of a graph different from the upper bound in Corollary 1 was obtained by the author in [4].

Added in proof. The graphs G fulfilling the assumption of Corollary 5 were also studied by W. Mader (Minimale n-fach kantenzusammenhängende Graphen. Math. Ann. 191 (1971), 21-28).

References

[1] M. Behzad, G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon, Inc., Boston 1971.
[2] R. Halin: A theorem on n-connected graphs. J. Combinatorial Theory 7 (1969), 150-154.
[3] D. R. Lick: Minimally n-line connected graphs. J. reine angew. Math. 252 (1972), 178-182. [4] L. Nebeský: An upper bound for the minimum degree of a graph (submitted to publication).

Author's address 11638 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).

