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Časopis pro pěstování matematiky, roř. 101 (1976), Praha 

A CONSTRUCTION OF TOLERANCES ON MODULAR LATTICES 

IVAN CHAJDA, Prerov 

(Received July 16, 1975) 

It is well-known that there exists a one-to-one correspondence between congruences 
and ideals in rings and .G-groups (see [4]) and between congruences and normal 
subgroups in groups. This correspondence exists also between congruences and ideals 
in Boolean algebras (see [1] or [5]), however, an analogous correspondence does 
not exist for distributive lattices in the general case, as is shown in [5]. It is only 
proved in [3] (Theorem 2.2) that each ideal of a lattice L is a kernel of at least one 
congruence relation if and only if L is distributive. The aim of this paper is to give 
a relationship between ideals and compatible tolerances for modular lattices. 

1. 

By a tolerance relation, or briefly a tolerance, on a set A we mean a reflexive and 
symmetric binary relation on A. Thus each equivalence relation on A is a tolerance 
relation on A. 

Let 31 = (A, F) be an algebra with the support A and a set F of fundamental 
operations. Further, let T be a tolerance relation on the support A. The relation T 
is called a compatible tolerance relation on 31 (or briefly a compatible tolerance 
on 31) if for each n-ary / e F, n ^ 1, and for arbitrary al9..., an, bi9 ...,bne A 
such that a( Tb{ (i == 1,..., n) we have also f(al9..., an) Tf(bl9..., bn). 

Especially, each congruence on 31 is a compatible tolerance on 31. The concept 
of compatible tolerance has been introduced for algebraic structures by B. ZELINKA 
in [6] and studied for lattices in [7] and [8]. 

Definition 1. Let 31 == (A9 F) be an algebra, S = {Ay, y e F} a system of subsets 
Ay c A. S is called a covering of 31 if U Ay « A. The covering S is called com-

yer 
patible on 3t, if for each n-ary fsF and arbitrary Ti, .., y„ there exists y0er 
such that at e Ayi (i = 1,..., n) imply f(au ..., an) e Ayo. 
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Clearly, if & is a congruence on an algebra 9t, then the system of all classes of the 
partition of A induced by & forms a compatible covering of 91. 

Definition 2. Let 91 = (A, F) be an algebra, S = {Ar y e F} a covering of 91. The 
binary relation T(S) defined on A by the rule 

a T(Sjb if and only if there exists y0 e F such that a, be Ayo 

is called induced by S. 
It is clear that T(S) is a tolerance relation on A for an arbitrary covering S of 91. 

If S is a partition of A, then T(S) is an equivalence on A. 

Lemma 1. Let 91 = (A, F) be an algebra and S a compatible cdvering of 91. 
Then the relation T(S) induced by S is a compatible tolerance relation on 91. 

The proof is clear and follows directly from Definition 1. 
Let L be a lattice. By v or A the operation join or meet on L, respectively, is 

denoted. Denote by <; the lattice ordering on L. If a, beLare incomparable, i.e. 
neither a S b nor 5 ^ a, then we symbolize it by a || b. By the symbol J(a) we denote 
the principal ideal of L generated by a. 

Notation. Let Lbe a lattice, a e L, and J be an ideal of L. Denote a v J = {a v j ; 
; * J } . 

Theorem 1. Let Lbe a lattice. Then the following two conditions are equivalent: 
(a) Lis modular; 
(b) for each ideal J of L and each element a e Lthe set a v J is a convex sub-

lattice of L. 

Proof. Let (a) be valid, a e L, and let J be an ideal of L. Let j e J and x e 
e\a,a v ; ] . From a result of Croisot [2] it follows that xe a v J. Hence a v J 
is a convex subset of L. Let x, ye a v J. Then there exist it,i2e J such that x = 
=* a v iu y =* a v i2. Thus 

x v y * (a v i|) v (a v i2) -= a v (it v i 2 ) e f l v / , 

x A y = (a v it) A (a v i2) « a v (it A (a v i2)) = a v ie a v J, 

where i = ij, A (a v i2). Hence (b) holds. 
Conversely, assume that (a) does not hold. It is well-known that then L must 

contain a five-element non-modular sublattice {x0, xt, x2, x3, x4} such that x0 < 
< x2 < xu x0 < x3 < x4 < xt. Put J -* J(x2), a = x3. Then clearly x t, x3 e 
ea v J, Suppose that x4 ** a v j for some j € J. Then j S #4 and from I e J(x2) 
we have j :£ x2. Hence j <£ x2 A X4 -= x0. Thus 

x4 a* a v I <* a v x0 -» x3 v x0 « x 3 , 
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which is a contradiction with x3 < x4. Hence a v J fails to be a convex subset in L. 

Lemma 2. Let Lbe a lattice and J an ideal of L. Then Sj = {a v J, a e L} is 
a covering of L. 

Proof. Let ae L, xe J. Then a A x 6 J, thus a = a v (x A a) e a v J. 

Definition 3. Let L be a lattice and J an ideal of L. The covering Sj = {a v J, 
a € L} is called induced by J and the tolerance relation T(Sj) induced by Sj is called 
tolerance on L induced by the ideal J. For the sake of brevity, denote by Tj = T(Sj) 
the tolerance induced by J. 

Now, we have two natural problems: the first, for which ideal J of L the relation 7} 
is a compatible tolerance on L, and the second, for which J is a compatible tolerance 
which is not a congruence on L. This first problem is considered in what follows for 
the case of modular lattices. 

Definition 4. Let Lbe a lattice and c e L. If for each a,be L c fulfils the identity 

(a v c) A (b v c) = (a A b) v c, 

c is called a semi-distributive element. 

Theorem 2. Lcf Lbe a modular lattice and j e La semi-distributive element of L. 
/ / J is the principal ideal of L generated by j , then Tj is a compatible tolerance 
relation on L. • 

Proof. By Lemma 2, Tj is a tolerance relation on L. It remains to prove that 7} 
is compatible on L. If the covering Sj = {x v J, x e L} induced by J is a compatible 
covering of L, then, by Lemma 1, Ts is a compatible tolerance on L. Accordingly, 
it suffices to prove only the compatibility of Sj. 

Let a,beL, xe a v J, yebvJ. Then there exist il5 i2 e J such that x = 
= a v i*!, )> = fe v **2. Evidently, x v y = (a v b) v i where i = ^ v i2 e J, 
thus x v ye (a v 6) v J. 

Further, we have 

(1°) x A y = (a v it) A (6 v f2) •£ (a A fc) v (ij A I2) e (a A fe) v J . 

As J = J(j), it is i g j for each i e J. Then 

x A y = (a v it) A (£> v i2) g (a v j) A (b v j)'. 

However, j is a semi-distributive element, thus 

(2°) x A y jg (a A b) v j e (a A b) v J . 
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By Theorem 1, (a A b) v J is a convex sublattice of L, thus (1°) and (2°) imply 
x A y e (a A b) v J. 

Remark, Let L be a lattice and T a compatible tolerance relation on L. If there 
exists an ideal J of L such that T = T/5 we call T a constructible tolerance on L. 
Thus, each constructible tolerance on L is a compatible tolerance relation on L, 
however, the converse assertion need not be true. The problem of the determination 
of lattices on which each compatible tolerance relation is constructible is open. 
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