Mohamed Afwat
On generalized Weingarten surfaces

Časopis pro pěstování matematiky, Vol. 101 (1976), No. 3, 263--270

Persistent URL: http://dml.cz/dmlcz/117919

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON GENERALIZED WEINGARTEN SURFACES

M. AFWAT, Cairo
(Received June 30, 1975)

Following the ideas of A. ŠVEC [1], I am going to present further generalizations of the H- and K-theorems.

1.

Theorem 1. Let \(G \subset \mathbb{R}^2 \) be a bounded domain, \(M : G \cup \partial G \to E^3 \) a surface with a net of lines of curvature, \(v_1 \) and \(v_2 \) the unit tangent vector fields of these lines, \(k_1 \) and \(k_2 \) the corresponding principal curvatures. Let \(M(\partial G) \) consist of umbilical points. Further, suppose

\[
\begin{align*}
(1.1) & \quad K \geq 0, \\
(1.2) & \quad (k_1 - k_2)(v_1v_1 - v_2v_2)H \geq 0
\end{align*}
\]

on \(M \). Then \(M(G \cup \partial G) \) is a part of a sphere.

Proof. On \(M \), consider a field of tangent orthonormal moving frames \(\{m; v_1, v_2, v_3\} \). Then

\[
\begin{align*}
(1.3) & \quad dm = \omega^1 v_1 + \omega^2 v_2, \\
& \quad dv_1 = \omega^1_1 v_2 + \omega^1_3 v_3, \\
& \quad dv_2 = -\omega^2_1 v_1 + \omega^2_3 v_3, \\
& \quad dv_3 = -\omega^3_1 v_1 - \omega^3_2 v_2
\end{align*}
\]

with the usual integrability conditions. We have

\[
\begin{align*}
(1.4) & \quad \omega^1_3 = a\omega^1, \quad \omega^3_2 = c\omega^2 \\
(1.5) & \quad da = \alpha \omega^1 + \beta \omega^2, \\
& \quad (a - c) \omega^2_1 = \beta \omega^1 + \gamma \omega^2, \\
& \quad dc = \gamma \omega^1 + \delta \omega^2;
\end{align*}
\]
\begin{align}
(1.6) \quad d\alpha - 3\beta \omega_1^2 &= A\omega_1 + B\omega^2, \\
& \quad d\beta + (\alpha - 2\gamma) \omega_1^3 = B\omega_1 + (C + aK) \omega^2, \\
& \quad d\gamma + (2\beta - \delta) \omega_1^2 = (C + cK) \omega_1 + D\omega^2, \\
& \quad d\delta + 3\gamma \omega_1^2 = D\omega_1 + E\omega^2 \\
\end{align}

and

\begin{align}
(1.7) \quad v_1 a &= \alpha, \quad v_2 a = \beta, \quad v_1 c = \gamma, \quad v_2 a = \delta ; \\
(1.8) \quad v_1 H &= \frac{1}{2}(\alpha + \gamma), \quad v_2 H = \frac{1}{4}(\beta + \delta); \\
(1.9) \quad (a - c) v_1 \alpha &= 3\beta^2 + A(a - c), \\
& \quad (a - c) v_1 \beta &= 3\beta \gamma - \alpha \beta + B(a - c), \\
& \quad (a - c) v_1 \gamma &= \beta(\delta - 2\beta) + (C + cK)(a - c), \\
& \quad (a - c) v_1 \delta &= D(a - c) - 3\beta \gamma, \\
& \quad (a - c) v_2 \alpha &= 3\beta \gamma + B(a - c), \\
& \quad (a - c) v_2 \beta &= 2\gamma^2 - \alpha \gamma + (C + aK)(a - c), \\
& \quad (a - c) v_2 \gamma &= \gamma(\delta - 2\beta) + D(a - c), \\
& \quad (a - c) v_2 \delta &= E(a - c) - 3\gamma^2; \\
(1.10) \quad (a - c) v_1 v_1 H &= \frac{1}{4}(\beta + \delta) \beta + \frac{1}{2}(a - c)(A + C + cK), \\
& \quad (a - c) v_1 v_2 H &= -\frac{1}{4}(\alpha + \gamma) \beta + \frac{1}{2}(a - c)(B + D), \\
& \quad (a - c) v_2 v_1 H &= \frac{1}{4}(\beta + \delta) \gamma + \frac{1}{2}(a - c)(B + D), \\
& \quad (a - c) v_2 v_2 H &= -\frac{1}{4}(\alpha + \gamma) \gamma + \frac{1}{2}(a - c)(C + E + aK). \\
\end{align}

For

\begin{align}
(1.11) \quad f &= 2(H^2 - K) = \frac{1}{2}(a - c)^2, \\
\end{align}

define its covariant derivatives f_0, f_{ij} by

\begin{align}
(1.12) \quad df &= f_1 \omega^1 + f_2 \omega^2; \\
& \quad df_1 - f_2 \omega_1 = f_{11} \omega^1 + f_{12} \omega^2, \\
& \quad df_2 + f_1 \omega_1 = f_{12} \omega^1 + f_{22} \omega^2. \\
\end{align}
Then
\begin{align*}
(1.13) \quad f_{11} &= (c^2 - ac) K + (\alpha - \gamma)^2 + 4\beta^2 + (a - c)(A - C), \\
&\quad f_{22} = (a^2 - ac) K + (\beta - \delta)^2 + 4\gamma^2 + (a - c)(C + E), \\
&\quad f_{12} = (\alpha - \gamma)(\beta - \delta) + 4\beta\gamma + (a - c)(B - D).
\end{align*}
Now, set
\begin{align*}
(1.14) \quad S &= (v_1 + v_2) H; \\
&\quad v_1v_1H + v_1v_2H = v_1S, \\
&\quad v_2v_1H + v_2v_2H = v_2S,
\end{align*}
i.e.,
\begin{align*}
(1.15) \quad \beta^2 + \beta\delta + K(ac - c^2) - \beta\gamma - \alpha\beta + (a - c) A + (a - c) B + \\
&\quad + (a - c) C + (a - c) D - 2(a - c) v_1S = 0, \\
&\quad \beta\gamma + \gamma\delta - \gamma^2 - \alpha\gamma + (a^2 - ac) K + (a - c) B + (a - c) C + \\
&\quad + (a - c) D + (a - c) E - 2(a - c) v_2S = 0.
\end{align*}
Eliminating A, B, C, D, E from (1.13) and (1.15), we get
\begin{align*}
(1.16) \quad f_{11} + f_{22} &= 4Kf + 2(a - c)(v_1S - v_2S) + \alpha^2 - 3\alpha\gamma + \\
&\quad + 4\gamma^2 + 4\beta^2 - 3\beta\delta + \delta^2 + \alpha\beta + 2\beta\gamma + \gamma\delta.
\end{align*}
Now,
\begin{align*}
(1.17) \quad v_1S - v_2S &= v_1v_1H + v_1v_2H - v_2v_1H - v_2v_2H, \\
(1.18) \quad (a - c)(v_1S - v_2S) &= (a - c)(v_1v_1H - v_2v_2H) - \frac{1}{2}(\beta + \delta) \gamma - \\
&\quad - \frac{1}{2}(\alpha + \gamma) \beta,
\end{align*}
and (1.16) turns out to be
\begin{align*}
(1.19) \quad f_{11} + f_{22} - 4Kf &= 2(a - c)(v_1v_1 - v_2v_2) H + (\alpha - \frac{3}{2}\gamma)^2 + \\
&\quad + (\delta - \frac{3}{4}\beta)^2 + \frac{1}{4}(\beta^2 + \gamma^2).
\end{align*}
This equation satisfies the conditions of the maximum principle because of (1.1) and (1.2). Thus $H^2 - K = 0$ on $M(\partial G)$ implies $H^2 - K = 0$ on $M(G)$. QED.

Theorem 2. Let $G \subset \mathbb{R}^2$ be a bounded domain, $M : G \cup \partial G \rightarrow E^3$ a surface with a net of lines of curvature, v_1 and v_2 be the fields of the unit tangent vectors of these lines, k_1 and k_2 be the corresponding principal curvatures. Let $M(\partial G)$ consist of umbilical points. On M, suppose
K > 0 ,
(1.21) \((k_1 - k_2) (v_1 v_2 - v_2 v_2) K \geq 0 , \)
(1.22) \(\frac{4}{11} \leq \frac{k_2^2}{k_1^2} \leq \frac{11}{4} . \)

Then \(M(G \cup \partial G) \) is a part of a sphere.

Proof. Let us keep the notation of the proof of the previous theorem. Then

\[v_1 K = a\gamma + c\alpha , \quad v_2 K = a\delta + c\beta ; \]

\[(a - c) v_1 v_1 K = a[\beta(\delta - 2\beta) + K(ac - c^2)] + 3c\beta^2 + \]

\[+ a(a - c) C + c(a - c) A + 2(a - c) \alpha \gamma , \]

\[(a - c) v_2 v_2 K = c[\gamma(2\gamma - \alpha) + K(a^2 - ac)] - 3a\gamma^2 + \]

\[+ c(a - c) C + a(a - c) E + 2(a - c) \beta \delta , \]

\[(a - c) v_1 v_2 K = c\beta(2\gamma - \alpha) - 3a\beta\gamma + c(a - c) B + \]

\[+ a(a - c) D + (a - c) (\alpha \delta - \beta \gamma) , \]

\[(a - c) v_2 v_1 K = a\gamma(\delta - 2\beta) + 3c\beta\gamma + c(a - c) B + \]

\[+ a(a - c) D + (a - c) (\alpha \delta + \beta \gamma) . \]

Set

\[(v_1 + v_2) K = S . \]

Then

\[(v_1 v_1 + v_1 v_2) K = v_1 S , \]

\[(v_2 v_1 + v_2 v_2) K = v_2 S . \]

From (1.24)

\[a(\beta \delta - 2\beta^2) + aK(ac - c^2) + 3c\beta^2 + 2(a - c) \alpha \gamma - \]

\[- 3a\beta\gamma + 2c\beta\gamma - c\alpha \beta + (a - c) (\alpha \delta + \beta \gamma) - \]

\[- (a - c) v_1 S + (ca - c^2) A + (ca - c^2) B + (a^2 - ac) C + \]

\[+ (a^2 - ac) D = 0 , \]

\[a(\gamma \delta - 2\beta \gamma) + 3c\beta \gamma + (a - c) (\alpha \delta + \beta \gamma) - 3a\gamma^2 + \]

\[+ 2c\gamma^2 - c\alpha \gamma + Kc(a^2 - ac) + 2(a - c) \beta \delta - (a - c) v_2 S + \]

\[+ (ca - c^2) B + (ca - c^2) C + (a^2 - ac) D + (a^2 - ac) E = 0 . \]
Eliminating A, B, C, D, E from (1.13) and (1.27), we get

\[(1.28)\quad c_{f_{11}} + a f_{22} - 2K(a + c)f = (a - c)(v_1 - v_2)S +
+ \{(a + c)\beta\gamma + c\alpha\beta + a\gamma\delta\} + (3a + c)\beta^2 +
+ (a + 2c)\beta\delta - (2a + c)\alpha\gamma + (a + 3c)\gamma^2 +
+ c\alpha^2 + a\delta^2 .
\]

From (1.24) and (1.26),

\[(1.29)\quad c_{f_{11}} + a f_{22} - 2K(a + c)f = (a - c)(v_1v_1 - v_2v_2)K +
+ a \left[\left\{ \delta - \left(\frac{1}{2} + \frac{c}{a} \right) \beta \right\}^2 + \left(\frac{11}{4} - \frac{c^2}{a^2} \right) \beta^2 \right] +
+ c \left[\left\{ \alpha - \left(\frac{1}{2} + \frac{a}{c} \right) \gamma \right\}^2 + \left(\frac{11}{4} - \frac{a^2}{c^2} \right) \gamma^2 \right] .
\]

This equation satisfies the conditions of the maximum principle because of (1.20) to (1.22). Again, $H^2 - K = 0$ on ∂G implies $H^2 - K = 0$ on G. QED.

Remark. Let us replace (1.21) and (1.22) by the condition $K = ac = \text{const.} > 0$. Then

\[(1.30)\quad v_1K = c\alpha + a\gamma = 0 , \quad v_2K = c\beta + a\delta = 0 .
\]

Put

\[(1.31)\quad \alpha = pa , \quad \beta = qa , \quad \gamma = -pc , \quad \delta = -qc .
\]

The equation (1.29) turns out to be

\[(1.32)\quad c_{f_{11}} + a f_{22} - 2K(a + c)f = p^2(3a^2c + 2ac^2 + 3c^3) +
+ q^2(3ac^2 + 2a^2c + 3a^3) = (cp^2 +aq^2)(3a^2 + 2ac + 3c^2) ,
\]

and we get the proof of the K-theorem.

2.

Let us consider the surfaces with nets of lines of curvature (for notation, see our Theorems) for which they are functions $P, Q, T : M \to \mathcal{A}$ such that

\[(2.1)\quad P v_1H + Q v_2H + T = 0 .
\]
Following the remark to Theorem 2 in [1], we wish to establish the class of operators (2.1) such that we might be able to prove by means of the maximum principle that each surface satisfying (2.1) is a part of a sphere.

Without loss of generality, (2.1) may be written as

\[v_1 H + Rb_2 H = S. \]

Applying \(v_1 \) and \(v_2 \) to (2.2) and using (1.10), we get the equations of the form

\[
\begin{align*}
(a - c)(A + RB + C + RD) &= \Phi_1(a, C, x, \beta, \gamma, \delta), \\
(a - c)(B + RC + D + RE) &= \Phi_2(a, C, x, \beta, \gamma, \delta).
\end{align*}
\]

Now, our task is to eliminate \(A, \ldots, E \) from (2.3) and (1.13). For this, the rank of the matrix (of the coefficients at \(A, \ldots, E \))

\[
\begin{pmatrix}
1 & R & 1 & R & 0 \\
0 & 1 & R & 1 & R \\
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{pmatrix}
\]

should be <5. This implies \(R = \pm 1 \), and our operators are given by

\[(v_1 \pm v_2) H - S = 0. \]

Similarly, for the operators of the form

\[P'v_1 K + Q'v_2 K + T' = 0, \]

our class of "convenable" operators is given again by

\[(v_1 \pm v_2) K - S' = 0. \]

3.

We might give a generalization of Theorems 1 and 2, this being, of course, not as sharp in the suppositions.

Theorem 3. Let \(G \subset \mathbb{R}^2 \) be a bounded domain, \(M : G \cup \partial G \rightarrow E^3 \) a surface with a net of lines of curvature, \(v_1 \) and \(v_2 \) the unit tangent vector fields of these lines, \(k_1 \) and \(k_2 \) be the corresponding principal curvatures. Let \(M(\partial G) \) consist of umbilical points; further, let us suppose
on M, and let there be a function $F: M \to \mathbb{R}^2$ satisfying

\[(3.3) \quad (k_1 - k_2)(v_1 v_1 - v_2 v_2) F(H, K) \geq 0,\]

\[(3.4) \quad F_H \geq 0, \quad F_K \geq 0,\]

\[(3.5) \quad (k_1 - k_2)(v_1 + v_2) H \cdot \{F_{HH}(v_2 - v_1) H + F_{HK}(v_2 - v_1) K\} \geq 0,\]

\[(3.6) \quad (k_1 - k_2)(v_1 + v_2) H \cdot \{F_{KH}(v_2 - v_1) H + F_{KK}(v_2 - v_1) K\} \geq 0\]

on $M(G \cup \partial G)$. Then $M(G \cup \partial G)$ is a part of a sphere.

Proof. The function S be defined by

\[(3.7) \quad (v_1 + v_2) F(H, K) + S = 0.\]

\[(3.8) \quad \{F_{HH} v_1 H + F_{HK} v_1 K\} \cdot (v_1 + v_2) H + (v_1 v_1 + v_1 v_2) H \cdot F_H + \]
\[+ \{F_{KH} v_1 H + F_{KK} v_1 K\} \cdot (v_1 + v_2) K + (v_1 v_1 + v_1 v_2) K \cdot F_K + \]
\[+ v_1 S = 0,\]

\[\{F_{HH} v_2 H + F_{HK} v_2 K\} \cdot (v_1 + v_2) H + (v_2 v_1 + v_2 v_2) H \cdot F_H + \]
\[+ \{F_{KH} v_2 H + F_{KK} v_2 K\} \cdot (v_1 + v_2) K + \]
\[+ (v_2 v_1 + v_2 v_2) K \cdot F_K + v_2 S = 0.\]

From (1.8), (1.10), (1.23) and (1.24),

\[(3.9) \quad (a - c) \{F_{HH}(\frac{1}{2} \alpha + \frac{1}{2} \gamma) + F_{HK}(a \gamma + c \alpha)\} (\frac{1}{2} \alpha + \frac{1}{2} \gamma + \frac{1}{2} \beta + \frac{1}{2} \delta) + \]
\[+ \frac{1}{2} F_H[\beta^2 + \beta \delta - \beta \gamma - c \alpha + (a - c)(A + C + c K + B + D)] + \]
\[+ (a - c) \{F_{KH}(\frac{1}{2} \alpha + \frac{1}{2} \gamma) + F_{KK}(a \gamma + c \alpha)\} (a \gamma + c \alpha + a \delta + c \beta) + \]
\[+ F_K[\alpha \beta \delta - 2 \beta^2 + c K(a - c)] + (a - c) \gamma \alpha + 3 c \beta^2 + (a - c) \alpha \gamma + \]
\[+ a(a - c) C + c(a - c) A + a(a - c) D + c(a - c) B - 3 a \beta \gamma + \]
\[+ (a - c) a \delta + 2 c \beta \gamma - c \alpha \beta + (a - c) \beta \gamma] + (a - c) v_1 S = 0,\]
\[(a - c) \{F_{HH}(\frac{1}{2} \beta + \frac{1}{2} \delta) + F_{HK}(a \delta + c \beta)\} (\frac{1}{2} \alpha + \frac{1}{2} \beta + \frac{1}{2} \gamma + \frac{1}{2} \delta) + \]
\[+ \frac{1}{2} F_{H}[\beta \gamma + \gamma \delta + (a - c)(B + D) - \gamma^2 - \gamma \alpha + (a - c)(C + aK + E)] + (a - c) \left\{ F_{KH}(\frac{1}{2} \beta + \frac{1}{2} \delta) + F_{KK}(a \delta + c \beta) \right\} \left(a \gamma + c \alpha + a \delta + c \beta \right) + F_{K}(a \gamma \delta - 2a \beta \gamma + (a - c) \beta \gamma + 3c \beta \gamma + (a - c) \alpha \delta + a(a - c) D + c(a - c) B + a(a - c) E + c(a - c) C - 3a \gamma^2 + (a - c) \beta \delta + 2c \gamma^2 - c \gamma \alpha + c(a^2 - ac) K + (a - c) \beta \delta \right\} + (a - c) v_2 S = 0. \]

Multiplying the first two equations (1.13) by \((-\frac{1}{2} F_{H} - cF_{K})\) and \((-\frac{1}{2} F_{H} - aF_{K})\) resp., and using (3.9), we can eliminate \(A, B, C, D\) and \(E\), and we get

\[(3.10) \quad (\frac{1}{2} F_{H} + cF_{K}) f_{11} + (\frac{1}{2} F_{H} + aF_{K}) f_{22} - \left\{ \frac{1}{2} F_{H} K + 2F_{KH} \right\} 2f = (a - c)(v_1 v_1 - v_2 v_2) F + \frac{1}{2} F_{H} \left[3(\beta - \frac{1}{2} \delta)^2 + 3(\gamma - \frac{1}{2} \alpha)^2 + \beta^2 + \gamma^2 + \frac{1}{2} \alpha^2 + \frac{1}{2} \delta^2 \right] + F_{K} \left[a \left\{ \delta - \left(\frac{1}{2} + \frac{c}{a} \right) \beta \right\} ^2 + a \left(\frac{11}{4} - \frac{c^2}{a^2} \right) \beta^2 + c \left(\alpha - \left(\frac{1}{2} + \frac{a}{c} \right) \gamma \right) ^2 + c \left(\frac{11}{4} - \frac{a^2}{c^2} \right) \gamma^2 \right] + (a - c) F_{HH}(v_1 + v_2) H \cdot (v_2 - v_1) H + (a - c) F_{HK}(v_1 + v_2) H \cdot (v_2 - v_1) K + (a - c) F_{KH}(v_1 + v_2) K \cdot (v_2 - v_1) H + (a - c) F_{KK}(v_1 + v_2) K \cdot (v_2 - v_1) K. \]

The result follows.

Bibliography

Author's address: Dept. of Geometry, Military Technical College, Cairo (E.A.R.).