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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

ISOMETRIC PARTS OF OPERATORS AND THE CRITICAL EXPONENT 

VLASTIMIL PTAK, Praha 

(Received November 17, 1975) 

In the theory of linear operators in Hilbert space, the idea of splitting off a sub-
space on which the given operator possesses some distinguished property, has proved 
useful. The unitary part of a contraction is an example [6]. The normal part of an 
arbitrary bounded operator may be investigated in a similar manner [1]. Recently, 
E. DURSZT [2] has described the unitary part of an arbitrary bounded linear operator 
on a Hilbert space. In the present remark we collect some simple results concerning the 
analogous question of identifying isometric parts of operators; of course, it is not to 
be expected that results of the same order of completeness may be obtained in this 
case; nevertheless, under additional assumptions the results are satisfactory. 

It is not difficult to describe, for each bounded linear operator T on a Hilbert 
space H9 a subspace (p(T)9 invariant with respect to T, on which T is isometric. It is 
easy to describe the basic properties of this subspace; we collect them in the first 
section. The second section shows how they may be used to characterize linear 
operators whose spectral radius equals their norm; in particular, this approach 
gives another simple explanation of the fact that the critical exponent of the n-dimen-
sional Hilbert space is exactly n. Section three contains examples to show that some 
of the restrictions imposed in section one cannot be removed. 

1. ISOMETRIC PARTS 

In the first section, we collect some elementary facts concerning subspaces on which 
the given operator is isometric. 

(1,1) Let E be a linear space, T a linear operator on E. If F is a subspace of E, 
denote by (p(F, T) the intersection 

FnT"^ r\T~2F n . . . 

Then q>(F9 T) is invariant with respect to T and contains every subspace of F 
which is invariant with respect to T. 
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Proof. It suffices to prove the second assertion. If E0 c F and E0 is invariant with 
respect to T, we have, for each k ;> 1 TkE0 c E0 c F whence £0 c T~*F. It 
follows that JE0 c <p(T, T). 

(1.2) Lef Tbe a bounded linear operator on a Hilbert space H. Set 

q>(T) = <p(Ker (I - T*T)9 T). 

Then <p(T) is invariant with respect to Tand Trestricted to <p(T) is an isometry. 
If T is a contraction then <p(T) contains every closed subspace H0 invariant 
with respect to T such that T\ H0 is isometric. 

Proof. If xeq>(T), we have, in particular x e K e r ( / ~ T*T) whence (x, x) = 
= (T*Tx9 x) = (Tx, Tx). Hence Tis isometric on <p(T). Now suppose H0 is a closed 
subspace of H invariant with respect to T and such that the restriction of T to H0 

is isometric. Now let Tbe a contraction. We have then, for each xeH0 

((I - T*T) x, x) = (x, x) - (T*Tx9 x) = (x, x) - (Tx, Tx) = 0 ; 

since / - T*T = 0, this implies (/ - T*T) x = 0. We have thus H0 c Ker (/ -
— T*T); at the same time, H0 is invariant with respect to T so that, by (1,1), it 
follows that H0 c q>(T). 

It is natural to ask whether (p(T) reduces T. This, unfortunately, is not true in 
general. We have, however, the following important particular case. 

(1.3) Let T be a contraction on a Hilbert space H. Suppose H0 c H is invariant 
with respect to Tand T isometric on H0. If H0 is finite-dimensional then H0 

reduces T. 

Proof. We begin by showing that Tmaps H0 onto itself. First of all, Tis injective 
on H0 since xeH0 and Tx = 0 implies |xj = |Tx| = 0. The space H0 being finite-
dimensional, it follows from the injectiveness of T on H0 that TH0 = H0. Given 
x e Jf0, we have (T*Tx9 x) = (Tx, Tx) = (x, x) so that ((/ - T*T) x, x) = 0. Since 
/ - T*T 2; 0 it follows that (/ - T*T) x = 0. This shows that H0 c Ker (/ - T*T). 
If y e H0 = T//0, there exists a h0 e H0 such that y = Th0. Hence T*y = T*Th0 = 
= h0e H0. The space H0 is thus invariant also with respect to T*. 

In the general case, we have 

(1.4) Let Tbe a bounded linear operator on a Hilbert space H. Then 

T*(<p(T) n Ker (/ - TT*)) c cp(T) . 

Proof. Suppose that xeq>(T) and 7T*x = x. We are to prove, for each k = 
= 0,1,2,..., the equation (/ - T*T) TkT*x = 0. For k = 0, we have (/ - T*T) T*x = 
= T*(I - TT*) x = 0. For k > 0, we have (/ - T*T) TkT*x = (/ - T*T). 

T*-t(rr*x) = (/ - T*T) Tk~lx = 0. It follows that T*x e q>(T) and the proof is 
complete. 
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For the sake of completeness we include the following theorem due to E. Durszt [2]. 

(1.5) Let Tbe a bounded linear operator on a Hilbert space H. Then q>(f) n (p(T*) 
is invariant with respect to both T and T*. 
If we denote by x the family of all closed subspaces of H which reduce T 
and on which Tis unitary, then 

1° cp(T) n q>(T*) e x9 

2° every H0 in x is contained in cp(T) n (p(T*). 

Proof. According to the preceding lemma, we have 

T*(<p(T) n cp(T*)) c T*(<p(T) n Ker (/ - IT*)) c cp(T) ; 

by symmetry 

T(q>(T) n cp(T*)) c cp(T*) . 

Together, these inclusions prove the first assertion. 
Since q>(T) n <p(T*) c Ker(/ - T*T) n Ker (/ - TT*) the restriction of T to 

q>(T) n <p(T*) is unitary. Now suppose that JZ0ex. Since H0 reduces T, we have 
(T\ H0)* = T* | H0. Since T\H0 is unitary, it follows that T*Tx = TT*x = x 
for all x e H0. Thus H0 c Ker (/ - T*T) and H0 c Ker (/ - TT*). By (1,1), the 
first inclusion, together with TH0 c H0, gives H0 c q>(T). The second inclusion 
and T*H0 c H0 yields H0 c (p(T*). The proof is complete. 

(1.6) Let Tbe a bounded linear operator in a Hilbert space H9na natural number. 
Then 

{xeH; \x\ = |Tx| = ... = |Tnx|} 3 K n T~XK n ... n T^^'^K 

where K = Ker(/-» T*T). 
If Tis a contraction, the two sets are equal; in particular, the set on the left-
hand side is a subspace. 

Proof. Let us show first that the subspace on the right-hand side always is contained 
in the set on the left-hand side, without assuming |T| ^ 1. Indeed, xeK implies 
(x, x) - (Tx, Tx) = (x - T*Tx, x) = ((/ - T*T) x, x) = 0. If k > 0 and x e T~kK 
then(Tfcx, Tfcx) - (Tfc+1x, Tfc+1x) = (Tfcx - T*Tfc+1x, Tfcx) = ((/ - T*T) Tkx, Tkx) = 
= 0. It follows that xeJ£nT~ 1 Kn . . . nT~ ( B ~ 1 ) .K implies |x| = \Tx\ = ... 
... = |T»x|. 

Now assume that Tis a contraction. Then 

/ _ J»*«T,» — C/ — T*T) 4- T*(l — T*T) T4* ... 4- T*n~1(l — T*T} T*""1 

and each of the summands is a nonnegative operator. Suppose now that |x| « 
= |T"x|. Then 

0 = {(I - Г-T") x, x) = (R0x. x) + (Rtx, x) + ... + (Қ._Łx, x) 

385 



where Rk m T*k(l - T*T) T*. Since each Rk is nonnegative, it follows that (Rkx9 x) = 
- 0 for each fc = 0 ,1 , . . . , n - 1. Now ((I - T*t) Tkx9 T

kx) = (JRkx, x) = 0 whence 
(I - T*T) Tkx = 0 so that x € T~~kK for each fc, 0 £ fc £ n - 1. The proof is 
complete. 

(1,7) Let Tbe a linear operator on a Hilbert space of dimension n. Then 

cp(T) = K n T"XK n...n T~*-l)K 

Proof. Apply the Cayley-Hamilton theorem. 

2. THE CRITICAL EXPONENT 

The following theorem has been proved first by the present author in [7]. The ori
ginal proof is geometrically intuitive and has not lost its interest although several 
new proofs have been published recently [3], [4], [9], [10]. The results of the pre
ceding section make it possible to give a very simple proof. Let us remark that con
dition 4° does not appear explicitly in the author's original paper; the original proof, 
however, is based on singling out a nontrivial reducing subspace on which the 
operator is unitary. 

(2,1) Theorem. Let A be a linear operator on a Hilbert space of dimension n. 
Then the following conditions are equivalent. 

r \A\ = 14 
2° \A\ = |.42|1/2 = \A3\113 = ... 

3° \A\ = U'l1'" 

4° A = иП 
where U is unitary and B is a contraction; more precisely: there is a nontrivial 
subspace H0 of H such that both H0 and H0 are invariant with respect 
to A, \A\"1 A restricted to H0 is unitary and9 restricted to H0, is a contraction. 

Proof. Assume 1°, Then, for each natural number p, 

\A\ - | 4 - \A>\?> = \Af» = \A\. 
The implication 2° -• 3° is immediate and so is 4° -* 1°. The proof will be complete 
if we show that 3° implies 4°. Hence assume 3°; the operator T = \A\~~1 A has 
norm one. 

The dimension of H being n, we have, using (1,7) and (1,6) 

<p(T) = Kn...nr~(n"1)K = {XEH; \X\ = \T*x\] . 
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Since 1 = \T\ = \T*\, there exists a vector x # 0 for which |x| = |T"x|v It follows 
that the subspace (p(T) is nontrivial According to (1,3) it reduces Tand T\ q>(T) 
is isometric, hence unitary. The proof is complete. 

3. EXAMPLES 

In this section we present simple examples to show that some of the hypotheses 
made in section one are essential for the validity of the results. 
(3.1) Let H be an infinite dimensional Hilbert space with an orthonormal basis 
eo> ei> ei> • • • • Let U be the isometric shift defined by Uek = ek+i for fc = 0,1, 2 , . . . . 
It follows that U*e0 = 0 and U*et = et-t for i = 1, 2 , . . . . Hence U*U = / and 
(/ - UU*) x = (x, e0) e0. It follows that Ker (/ - U*U) = H whence q>(U) = H. 
On the other hand x e Ker (/ - UU*) is equivalent to (x, e0) = 0. If x e (p(U*) 
then U*kx e Ker (/ - UU*) for each k = 0,1, 2, . . . . Now U*kx e Ker (/ - UU*) 
implies (l/*kx, e0) = 0 whence (x, ek) = (x, Uke0) = (U**x, e0) = 0. This shows 
that (p(U*) = 0. In this example (p(U) = H so that (p(U) is invariant with respect 
to U*; nevertheless (p(U*) = 0. 

(3.2) Let H be a Hilbert space with an orthonormal basis eh indexed by the set of 
all integers. Define a linear operator Tby the equations 

Tek = ek+i for k = 0 , Teh = \ek+i for k < 0 . 

Clearly Tis a contraction; it is not difficult to show that 

T*ej = ej.t for j = 1 , T*e,. = l ^ _ t for j < 1 . 

Denote by P + the orthogonal projection on the closed linear span of the sequence 
^o>^i»e29"- a nd by P~ the complementary projection so that / = P + 4-P~. 
We have 

T*T = P + + JP~ , 7T* = P + - 1£0 + iP"~ 

where JB0x = (x, e0) e0. It follows that (/ — T*T) x = 0 if and only if P+x = x. 
This space being invariant with respect to T, we have (p(T) = JR(P+). Clearly (p(T) 
is not invariant with respect to T*. Also (/ — TT*) x = 0 if and only if (x, ej) = 0 
for all j S 0- Now suppose x e <p(T*) and let j be a given integer. If j g 0 then 
(x,^) = 0 since x e Ker ( / - TT*). If j > 0, we have T*Jx e Ker ( / - TT*) 
whence (T*Jx, e0) = 0 so that 

(x, ej) - (x, T^0) = (T*'x, e0) = 0 . 

It follows that x = 0. Hence (p(T*) = 0. This example shows that the restriction 
to finite-dimensional subspaces H0 is essential in lemma (1,3). 
(3.3) Consider a two-dimensional Hilbert space H with an orthonormal basis eu e2. 
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Define a linear operator Ton H by setting Tet = — et9 Te2 = s/(3) et. It follows that 
T 2 aas — T. Consider the following unit vectors 

/ - i(-*i + V(3) e2) , g = ±(e. + V(3) **) • 
It is easy to verify the equations 

T*e t = 2/, T * e 2 - 0 , T# « et, TJf« 2e t , T*# = / , T * / = - / . 

It follows that <p(T) c Ker (I — T*T) = 0 in spite of the fact that the line 
through et is invariant with respect to T and T is an isometry on it. Also, <p(T*) c 
c Ker (I — TT*) == 0 although the line generated by / is invariant with respect 
to T* and T* is an isometry on it. For each natural number n we have 

T ^ = ( - l ) w + 1 e 1 , T*ng = (-l)n+1f. 

This example shows that the two sets in lemma (1,6) may be different; this is, of course, 
only possible for operators of norm greater than one. Also, we see that there may 
exist invariant subspaces not contained in q>(T) on which Tis isometric. The same is 
true for T*. 
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