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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

SETS OF tr-POROSITY AND SETS OF tr-POROSITY (q) 

LUDĚK ZAJÍČEK, Praha 

(Received July 11, 1975) 

1. INTRODUCTION 

The' notion of a set of cr-porosity was defined by E. P. DOLIENKO [1]. There 
exists a number of theorems in the theory of cluster sets which use this notion. (See 
M> P]> [3]> [4], [5].) It is easy to see that any set of cr-porosity is of the first category 
and of measure zero. The existence of a set of the first category and of measure zero 
which is not of cr-porosity is claimed without a proof in [l]. In the present article 
we shall prove this result. 

N.YANAGIHARA [2] defined and used the notion of a set of cr-porosity (q), 0 < q ^ 
2* 1, which coincides with the notion of a set of cr-porosity for q -= 1. We shall prove 
that the notions of a set of cr-porosity (q) and cr-porosity (p) coincide for any p, q, 
0 < p, q < 1. 

The main aim of the present article is to prove the results mentioned above and 
some other results on the sets of cr-porosity (q) (in our notation on sets of (xq)-a-
porosity) in Euclidean spaces. 

We shall generalize the notion of a set of <r-porosity (q) and we shall formulate 
some results in a general metric space in order to clarify the proofs. 

2. DEFINITIONS 

Let (P, Q) be a metric space. Then we define: 

2.1. The open sphere with the centre x e P and the radius r > 0 is denoted 
by K(x,r). 

2.2. L e t M c P , x 6 P , i ? > 0. Then we denote the supremum of the set {r > 0; 
for some z e P, K(z, r) c K(x, R) and K(z, r) n M = 0} by y(x, R, M). 

2.3. Let K(x, r) c P. Let / be an arbitrary function. Then we put / * K(x, r) == 
-X(x,/(r)>i f/(r)>0. 
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2.4. Let M c P. Let / be an arbitrary function. Then we put S(f, ryM) = 
= \j{f*K;KnM = 0, K = K(x, a), a < r and/(a) > 0}. 

2.5. We denote by G (resp. Gu resp. G2) the system of all real functions which are 
increasing and continuous (resp. for which oo > g'(x) ^ 1, resp. for which oo > 
> g'(x) = 1 and g(x) > x) on (0, 5) for some 8 > 0. 

2.6. We denote by G3 the system of all functions g e G such that for any A > 0 
and e > 1 there exists an integer r and 6 > 0 such that # 

(eg) o... o (eg) (x) = A g(x) for 0 < x < 0*. 
r-times 

2.7. Let /e G, M a P9 xe P. Then we say that x is a point of (/)-porosity of M if 

lim sup — f(y(x9 R, M)) > 0 . 
R-+0+ R 

2.8. Let / e G, M c P, x G P, c > 0. Then we say that x is a point of (/, c)-
porosity of M if 

lim sup — f(y(x9 R9 M)) = c . 
R-+o+ R 

2.9. Let g e G» H c G, M c P, x GP. Then we say that x is a point of <g>-
porosity of M if x G f){S(g9 r, M); r > 0}. We say that x is a point of <H>-porosity 
of M if it is a point of <h>-porosity of M for any he H. 

2.10. Let V be one of the symbols (/), (/, c), <h>, <H>. Let M c= P, N <z P. 
Then we say that M is of V-porosity if any point x e M is a point of V-porosity 
of M. We say that N is a set of V-cr-porosity if it is the union of a sequence of sets 
of V-porosity. 

2.11. We shall write "porosity" instead of "(x)-porosity" and "cr-porosity" 
instead of "(x)-<r-porosity". 

Let us note: 

2.12. The notions of a set of (x€)-porosity and of a set of (x*)-(T-porosity coincide 
with the notions of N. YANAGIHARA of a set of porosity (q) and of a set of <r-po-
rosity (g). 

2.13. Let V be one of the symbols (/), (/, c), <h>, <FT>. Then the system of all 
sets of V-porosity is an ideal of sets and the system of all sets of V-a-porosity is 
a cr-ideal of sets. 

2.14. A point x e Rk is a point of (x, l/2)-porosity of a set M cr Rk iff there exists 
a sequence of spheres {K(sn, rn)} such that lim sn = x, lim @(x, sn)jrn = 1 and 

!f->oo B-+00 

K(sn, r„) n M = 0 for n = I, 2 , . . . . 
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2.15. Evidently, we may always write (af, ac) instead of (f, c) if a > 0. 

2.16. A point x e P is a point of <ft>-porosity of a set M c P iff there exists 
a sequence of spheres {K(sn9 rn)} such that lim sn = x9 K(sn9 rn) n M = 0 and 

H-+O0 

Mr») > #(*> s») for n = 1, 2 , . . . . 

2.17. Let Fbe one of the symbols (f), (f, c), </*>, <H>. Let x e P, M c P. Then 
the poyit x is a point of V-porosity of the set M iff it is a point of V-porosity of the 
setM. 

3. SEVERAL LEMMAS 

3.1. Lemma. Let (P, Q) be a metric space, M c P,fe G. Then: 
(i) If x € P is a point of (f, 2)-porosity of M then it is a point of (f)-porosity 

ofM/ 
(ii) If xeM is a point of (jy-porosity of M then it is a point of (2f, i)-porosity 

ofM. 

Proof. The assertion (i) immediately follows from the continuity off on (0, 6) 
and from the definitions. The assertion (ii) follows from the fact that if K(y9 h) c 
c P - M , xef*K(y, h) and h is sufficiently small then f(y(x9R,M))>RJ2 
where R = 2Q(X9 y). 

3.2. Lemma. Let g eGt. Then if d > 0 is a sufficiently small number, the rela
tions z 6 g * I, I = (t — r, t •+• r) and I c J = (u — d9 u + d) imply z eg * J. 

Proof. Let d < S9 where 8 is the number from the definition of the system Gt 

(see 2.5). Then 

Q(Z9 U) ^ Q(Z9 t) + d - r < g(r) + d - r S g(d) 

and therefore zeg * J. 

3.3. Lemma. Let M c (a, 6) be a nowhere dense set. Let g e G2. Let {l„}?=i be 
00 

a sequence of pairwise disjoint open intervals such that (a, b) — M = (J /„. Let H 
11=1 

fee tAe set of all endpoints of intervals In. Let P be the set of all points of <#>-
porosity of M which lie in M n (a, b). Then 

P = ( H u lim sup g *In) n (a, fc). 
n-+ao 

Proof. Let z € (H u lim sup # * /„) n (a, fc). If z e H, then z e P, since #(x) > x 
l |->00 

% for sufficiently small x. If z e lim sup g * In9 then evidently z e P. Let y eP'.— H. 
n-+ao 

Then 2.16 and 3.2 clearly imply z e lim sup g * In. 
n-+oo 
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3.4. Lemma. Let H c G, / e G, c > 0. Lc* n be an integer and M e H1. Pu* 
N = M x Rn. Then N is a set of (/,c)-a-porosity or of (f9 c)-porosity9 or o/(/)-or-
porosity9 or of (f)-porosity9 or of (H)-o-porosity9 or of (H}-porosity in the space 
Rn+l iffM is of the same type as a subset ofR1. 

Proof. We shall prove only the part concerning (/, c)-<r-porosity, the proofs of 
the other parts being quite similar. The implication"if" follows from the fact that 

y((x9 y)9 r9Ax Rn) jj> y(x9 r, A) for any x e Rl
9 y e JR", A c Rl and r > 0. Now 

00 

we shall prove the implication "only if". Let N = \JNk where any Nk is a set of 
*=i 

(/, c)-porosity. Let {Bj^Li be a basis of open sets in Rn. Denote by Ak>t the set of 
all points x e M for which the set {z; (x, z) e Nk} is dense in Bt. Clearly M = U A,* 

and therefore it is sufficient to prove that each set Akpt is of (/, c)-porosity. Let 
x e Akt and z e Bt be such that (x, z) e Nk. Clearly for any r > 0 such that K(z9 r) c 
c= Bt9 the inequality y((x9 z), r, Nk) S y(x> r> -4k,f) holds. Since Nk is a set of (/, c)-
porosity in itw+1, the set Akt is a set of (/, c)-porosity in JR1. 

3.5. Lemma. Let P be a metric space and / e G. Let A a P be a set of (f)~<r~ 
00 

porosity. Then A -= \J An where An is a set of (/, cn)-porosity for some c„ > 0, 
« = i 

n = 1,2.... 
°° 

Proof. Let A = \J Bt where each set Bt is a set of (/)-porosity. For any i let Bitk 
i=l 

be the set of all points x e B( which are points of (/, l/fc)-porosity of the set Bf. 
00 

Clearly Bt = (J J5lJk and each set.Bf k is a set of (/, l/fc)-porosity. Now it is sufficient 
fc=i 

to order the sets Bik in a sequence {An}ns:i. 

4. SOME AFFIRMATIVE RESULTS 

In the present part we shall prove that some properties like <r-porosity are equi
valent with other, seemingly weaker properties of this type. We use only one method 
which is contained in the following basic proposition, 

4.1. Proposition. Let heG9 / e G. Let there exist an integer n and d > 0 such 
that 

(1) h(n)(x) = h o.., o h(x) £ f(x) for 0<x<8. 
• V - ^ * ' 

n-times . " . 

Let P be a metric space and let M tr P be a set of (f^-a-porosity. Then M is a set 
of (Ji^-a-porosity. 
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Proof. It is clearly sufficient to prove that if A is a set of <f>-porosity then it is 
a set of <ft>-ff-porosity. Put Ck = A n fi S(hik\ r, A), (see 2.4). Then A <z Cn and 

r>0 
it 

therefore A c \J (Ck — Ck„t) u C t. Since obviously C t is a set of <ft>-porosity it 

is sufficient to prove that Ck — Ck-t is a set of <ft>-<r-porosity for k = 2,... , n. 
Put Tfcflft = Cfc - S^**""1*, 1/m, ,4) for fc = 2,.. . , n and m = 1, 2 , . . . . Since clearly 

00 

Ck — Cjk-. t = U Tktm, it is sufficient to prove that any set Tk>m is a set of <ft>-porosity. 
m-=l 

Let z E Tkm, r > 0. Then there exists an open sphere K(y, t) such that t < min (l/m,r), 
.K()>, 0 n U = 0 and z € ft(*> * K(>>, r). Put K = h(k"1} * K(>>, t). Then z e ft * K and 
JK n Tktfn = 0 since K c S(/i(k""1), 1/m, .A). Since the radius of the sphere K is 
arbitrarily small provided r is sufficiently small, z is a point of <ft>-porosity of the 
set TktM. Therefore Tktm is a set of <ft>-porosity. Thus the proof is complete. 

4.2. Proposition. Let heG, fe G. For any B > 0, let there exist A > 0, 5 > 0 
and an integer r such that 

(2) (,4ft) o... o (,4ft) (x) = £f(x) for 0 < x < 6 . 
s „ / 

r-times 

Let P be a metric space and let M cz P be a set of (f)-a-porosity. Then M is a set 
of (h)-a-porosity. 

00 

Proof. By 3.5, M = \J Mm where Mm is a set of (f, cm)-porosity, cm > 0. By 2.15 
m--l 

and 3.1 Mm is a set of <2f/cm>-porosity. By 4.1 and (2) it is a set of <-4ft>-(x-porosity 
for some A > 0. Therefore by 2.15 and 4.1 it is a set of (ft)-o--porosity. Consequently M 
is of (ft)-a-porosity. 

4.3. Theorem. Let 0 < q < p < 1 and Je* Mbea subset of a metric space. Then M 
is a set of (xq)-a-porosity iff it is a set of (xp)-a-porosity. 

Proof. Let B > 0. Then the inequality (2) from Proposition 4.2 holds for A = 1, 
ft = xp, f = x9, an integer r such that pr < q and for a sufficiently small <5 > 0. 
Therefore the statement of the theorem follows from 4.2. 

4.4. Proposition. Let P be a metric space and g e G3 (see 2.6). Let M c P be 
a set of (g)-a-porosity and 0 < c < i . Tften M is a set of(g, c)-a-porosity. 

Proof. By 3.5 it is sufficient to prove that any set N of (g, a)-porosity is a set of 
(g> c)-cr-porosity. By 3.1, JV is a set of <2#/a>-porosity. Put A = 2/a and e = l/2c. 
Let r be the integer from 2.6. Then the inequality (l) from 4.1 holds for / = 2#/a, 
h = gj2c and for sufficiently small 8 > 0. Therefore by 4.1, N is a set of (gj2c)-a-
porosity and consequently it is a set of (g, c)-er-porosity. 

Since obviously xq e G3 for 0 < q £ 1, we have 
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4.5. Theorem. Let P be a metric space, 0 < g g l » 0 < c < | . Then a subset 
of P is a set of (xq)-a-porosity iff it is a set of(xq> c)-a~porosity. 

5. SOME NEGATIVE RESULTS 

In the present part we shall prove that some properties like <r-porosity are not 
equivalent with the others. We use only one method which is contained in the fol
lowing basic proposition. 

5.1. Proposition. Let feG and H c G2 (see 2.5). Let there exist a sequence 
{hi}n~i of functions from H and a sequence of positive numbers {sn}ns:1 such that 

(3) hno... o ht(x) < f(x) for 0 < x < en. 

Then in any Euclidean space there exists a perfect set F of (f}-porosity which is 
not a set of (H}-o-porosity. 

Along with 5.1, we shall prove the following proposition. 

5.2. Proposition. Let g eG and limxjg(x) = 0. Then in any Euclidean space 
x-*0 + 

there exists a perfect set F of (g, i)-porosity and of measure zero which is not of 
a-porosity. 

Proof. 3.4 implies that it is sufficient to construct a set F on the line. Let {kt}% t be 
an increasing sequence of integers such that kt = 1. Our construction depends on 
this sequence. For a proof of 5.1, the sequence {fcj may be chosen in an arbitrary 
way but for a proof of 5.2 we must choose it in a special way. Given {kj define 
a sequence {sp}£Li by the relations kSp S P S Kp+v We may and will assume 
that lim en = 0. 

n-*oo 

From the segment <0, 1> we shall delete in the k-th step a finite number of pairwise 
disjoint intervals, D-intervals of the order k. The points from <0,1> not contained 
in any D-interval will form the set F. For any integer k we shall define a system of 
remaining intervals (^-intervals) of the order k. Any i?-interval will be closed. The 
system of all -R-intervals of the order k and of all D-intervals of orders j <* k will 
form a covering of <0,1> and any two members of this system will have disjoint 
interiors. 

Define the D-intervals and the U-intervals by induction: 
1. A D-interval of the order 1 does not exist. As the system of all .R-intervals of 

the order 1, let us choose any covering of <0,1> by closed intervals of a length 
smaller than e2 such that any two its members have disjoint interiors. 

2. Let k be an integer. Let D-intervals and JS-intervals of all orders smaller than 
k -F 1 be defined. Let Ru ..., Rik be all /^-intervals of the order k. For; = 1,..., ik 
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define an open interval Di c Rj by the relation (hSk+t ©... o7^) * 25, = Pi# Define 
the system of all D-intervals of the order k + 1 as the system D1?..., Dik. The 
endpoints of the intervals Ds and (ft, o... o hx) * Dj9 j = 1,..., ik, f = 1,..., sk 4- 1 
divide <0,1> to a finite number of closed intervals. Let Al9..., Abk be all of these 
intervals which ̂ re disjoint with each D-interval of the order k -f 1. 

For 1 :g r S bk let Cr be a system of closed intervals of a length smaller than 
^k+1 + 1 such that \J{X;X eCr} = Ar and any two members of Cr have disjoint 

interiors. Define the system of all ^-intervals of the order k + 1 as the system \J Cr. 
r=l 

The following assertions are easily verified: 

(i) F is a perfect set of </>-porosity. 

(ii) Let R be an P-interval of an order k and let m ^ sk be an integer. Then the set 
P — \J{(hm o... o ht) * D; D c R is a D-interval} is a nonempty perfect set. If 
a contiguous interval of this set lies in R then it is of the form (hm o... o ht) * D, 
where D c P is a D-interval. 

(iii) Let D be a D-interval of an order k and let m <; sk- t + 1 be an integer. Let R 
be a P-interval such that Int R n D = 0. Then either Int P c (hOT 0 . . . o fct) * D 
or P n (ftm o ... o ht) * D = 0. 

00 

Now suppose that P is a set of <H>-cr-porosity. Then F = U Pf where each Pf 
i = l 

is a set of <H>-porosity. We shall define a sequence {FJ^o of nonempty perfect 
sets such that F => P i^1 3 P- and P ; n Pf = 0 for i = 1, 2, The existence of 
such a sequence yields a contradiction since it implies that there exists a point 

oo oo 

xeftFi c F which does not lie in U P t = P. Each set Ft will have the form 
i-eO i-*l 

(4) Pf = Rt - (J {(ft, O ... O ftt) * D; D c Rt is a D-interval} , 

where Rt is an P-interval of an order j *> fci+1 and (h0 o... o ht) * D = D. By (ii) 
any set of the form (4) is a nonempty perfect set. 

Define the sets Ft by induction: 
A. Put P0 =* R0 n F where P 0 is an P-interval of the order 1. 
B. Suppose that we have defined the set P,..We shall distinguish two cases: 
B 1. Fi 4: Fi+1.Then define P i + 1 as an P-interval of an order j ^ ki+2 such that 

#i+i ^ Pi+t = 9 and JRi+1 n P* is an infinite set. Define the set P i + 1 by (4). 
B2. Ftcz F i + 1 . Then any point of P i + 1 is a point of <fti+t>-porosity of Ft. 

Therefore by 3.3 and (ii)any point x e IntPf. n P i + 1 lies in an interval of the form 

fci+i *((**.•••-'? ° * i ) * 2)) = (ftf+i o . . . o ftt)* D , 

where D c: JR| is a D-interval. Therefore the nonempty perfect set A = P, -
•*• U{(*.+1 o ... o *i) • D; D c Pg} and the set Int P r n P i + 1 are disjoint. Define Pi+1 
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as an /^-interval of an order j § ki+2
 s u c h t h a t * * + - c I n t * i a n d ^ + 1 ^ i s a n 

infinite set. Then define the set Fi+l by (4). Since (iii) implies Fi+1 = Ri+i nA 
we have Fi+1 n Pi+t = 0. Thus the proof of 5.1 is complete. 

To prove 5.2 putf = gjl and H = {6x}. Then the assumptions of 5.1 are obviously 
fulfilled. If we denote by m j the measure of the union of all jR-intervals of the order ki9 

then evidently 
mi+l = m.(l - i/6l+1)*' + '-*« 

Therefore there exists a sequence {ki}
<j°sl such that lim mf = 0 and consequently 

jUF = 0. The set F is a set of <#/2>-porosity and therefore it is of (g9 l)-porosity. 
On the other hand, F is not a set of <6x>-cr-porosity and therefore it is not a set of 
(3x, l)-cr-porosity. Now 4.5 implies that F is not a set of a-porosity. 

5.3. Proposition. Let ft e G3, feGt. Let there exist B > 0 such that for any 
A > 0 and any integer r there exists S > 0 such that 

(Ah)o...o(Ah)(x) < Bf(x) for 0<x<8. 
r-times 

Then in any Euclidean space there exists a perfect set of (f)-porosity which is not 
of (h)-o-porosity. 

Proof. By 5.1, in any Euclidean space there exists a perfect set F of <£f>-porosity 
which is not of <6ft>-cr-porosity. Thus F is a set of (f)-porosity but not of (3ft, 1)-
cr-porosity and by 4.4 it is not of (ft)-cr-porosity. 

The following theorem is a consequence of 5.2. 

5.4. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect 
set F of (xq, i)-porosity and of measure zero which is not of c-porosity. 

The existence of a perfect set of (x*)-porosity which is not of tr-porosity follows 
also from the following easy theorem. 

5.5. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect 
set D of (xq)-porosity and of positive Lebesgue measure. 

Proof. 3.4 implies that it is sufficient to construct the set D on the line. We shall 
define a sequence of sets such that Sk contains 2* disjoint closed intervals: 

1. S0 = «0 , l/2>}. 

2. Suppose that we have defined Sk == {ll9..., I2k}. For j = 1,..., 2* define closed 
disjoint intervals Tj9 Ij such that 

* « * ( / , - ( / } u r ; ) ) = IntJ,. 

Put Sk+1. = {rur[,.t.,r2k,nk}. Put Dk = U{/;IeSJ and D = 0 -V The set D is 
it*=o 
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clearly a perfect set of (x€)-porosity. We have 

K / ; u j ; ) = A . / X i - - 1 - 1 / W / , _ I ) -

Since n J, < l/2"+1, we have 

^(/ ,-w/;)>/iL( l -2<1-1/« ) (B+2)). 

If we denote fiDk = m*, we have 

m„+1 >m„(l _2<1-1'«><»+2>) 

and therefore 

and 

^ + i > Ш ( l - 2 ( 1 - 1 / в , ( Ł - 2 ) ) 
fc-=0 

*=-o 
Thus the proof is complete. 

The following theorem justifies the complicated form of 5.1. 

5.6. Theorem. In any Euclidean space there exists a perfect set F of porosity 
which is not a set of (x, lj2)-G-porosity. 

Proof. Let H = {ax; a > 1}. For an integer n put hn = (1 + l/n2)x. Put 
00 

c = f | ( l + 1/fc2) and/(x) = 2cx. Then the assumption (3) from 51 is obviously 
fc-*i 

fulfilled and therefore in any Euclidean space there exists a perfect set F of <2cx>-
porosity which is not a set of <ff >-<x-porosity. The set F is clearly a set of porosity 
but not of (x, l/2)-o--porosity since a set is of (x, l/2)-porosity iff it is of <H>-porosity. 

5.7. Theorem. Let 0 < q < 1. Then in any Euclidean space there exists a perfect 
set D which is not a set of (x9)-a-porosity. 

Proof. The theorem immediately follows from 5.3 if we put h = x9

9 f = 
= (log(l/x))-\B = l. 

6. SOME OPEN PROBLEMS 

6.1. Problem. Does there exist a (perfect) set on the line of the first category 
and of measure zero which is not a set of (x9)-<r-porosity for 0 < q < 1? 

6.2. Problem. Does there exist feG such that any (perfect) set on the line of 
measure zero and of the first category is a set of (f)-a-porosityl 
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