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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

ON PARTITION GRAPHS AND GENERALIZATIONS 
OF LINE GRAPHS 

LADISLAV NEBESKY, Praha 

(Received June 6, 1976) 

By a graph we mean a graph in the sense of BEHZAD and CHARTRAND [1] or 
HARARY [2]. If G is a graph, then we denote by V(G), E(G), 5(G) and L(G) its vertex 
set, edge set, minimum degree and line graph, respectively. If G is a graph and 
u e V(G), then we denote 

E(G, u) -= {x e E(G); x is incident with u} . 

Let G and H be graphs, let E(G) 4= 0, and let M be a graph-theoretical property 
(of graphs). We shall say that H is an M-extension of G if there exists a 1-1-mapping 

g from E(G) onto V(H) such that the following conditions hold: 

(^G,Q,H) if x, ye E(G) and g(x) g(y) e E(H), then x and y are adjacent edges of G; 

(2G>f7,H/M) if u e V(G) and E(G, u) 4= 0, then the subgraph of H induced by {g(z); 
z e E(G, u)} has the property M. 

We denote by Al9 A2, and A3 the properties 
"either to be trivial or to contain no vertex of degree 0", 
" to be connected", • 

and 
"to be complete", 

respectively. 
It is clear that for every graph G with E(G) =f= 0, L(G) is the only -A3-extension of G. 

This means that the concepts of an /^-extension and an A[2"
extens-on a r e generaliza

tions of the concept of the line graph of a graph. 
Let F and G be graphs. We say that G is a partition graph of F if there exists 

a mapping f from V(F) onto V(G) such that the following condition holds: 

( 3 F / t G ) if u and v are distinct vertices of G, then u and v are adjacent if and only if 
there exist ref~l(u) and sef~x(v) such that rseE(F). 
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We say that G is a contraction of F if there exists a mapping f from V(F) onto V(G) 
such that (3FtftG) and the following condition holds: 

(4F,/,G) *f w G ^(^)> then the subgraph of F induced by f_1(w) is connected. 

The concept of a partition graph of a graph was studied by E. SAMPATHKUMAR and 
V. N. BHAVE [3]. (The concept of a contraction of a graph can be found in [1], p. 92.) 

The following theorem is the main result of the present note: 

Theorem. Let G, H, and J be graphs, and let S(G) = 2. Then 

(I) if H is an Arextension of G, and J is an A2-extension of H, then G is a parti
tion graph of J; 

(II) if H is an A2-extension of G, and J si the Arextension of H, then G is 
a contraction of J. 

Proof. Let H be an ^-extension of G (resp. an A2-extension of G), and let J 
be an A2-extension of H (resp. the A3-extension of H). There exists a 1-1-mapping 
g : E(G) -> V(H) such that (1G,*,H) and (2G,g,H\Ax) (resp. (2G>^ff/A2)) hold. Similarly, 
there exists a 1-1-mapping h : E(H) -> V(J) such that (lH,h,j) a n d (2HthtJjA2) (resp. 
(2H,hjA3)) hold. 

First, we assume that (2GgtH\Ax) and (2HthtJJA2) hold. 
Let r be an arbitrary vertex of G. We denote by H(r) the subgraph of H induced 

by {g(xr)\ xr e E(G, r)}, Since S(G) ^ 2, we have that H(r) is nontrivial. From 
(2G g H\AX) it follows that S(H(r)) ^ 1. We denote by J(r) the subgraph of J induced 
by'(h(yr);yreE(H(r))}. 

We introduce a mapping f from V(J) into V(G). Let v be an arbitrary vertex of J. 
Then there are adjacent vertices t and w of H such that h"1^) = tu. From (lGtgtH) 
it follows that g'1^) and g~x(u) are adjacent edges of G. We denote byf(v) the vertex 
of G incident both with g~l(t) and g~\u). Since t and w are vertices of H(f(v)), we 
have that v is a vertex of J(f(v)). 

Let s be an arbitrary vertex of G. It is easy to see thatf(w) = s for each w e V(J(s)). 
This means that / is a mapping from V(J) onto V(G), and tha t f" 1 ^) = V(J(s0)) 
for every s0 e V(G). 

Let i?! and i>2 be adjacent vertices of J and let f(vx) # f(tf2). There exist yl9 y2 e 
6 E(H) such that h^) = vx and h(y2) = v2. From (lH,y,j) 1t follows that yx and y2 

are adjacent. This means that there exist distinct vertices w0, ux and w2 of H such 
that yx = u0ut and y2 =-= w0w2. It is clear that f(vx) is incident both with g~\u0) 
and ^ ( w ^ , and thatf(v2) is incident both with g~l(u0) and g~1(u2). Since f(vx) 4= 
* / ( ^ we have that g~ (u0) =f(vi)f(v2). Hence f(vx) andf(i;2) are adjacent. 

Let sx and s2 be adjacent vertices of G. We shall prove that there exist wx ef"i(sx) 
and w2 ef~x(s2) such that wx and w2 are adjacent vertices of J. Denote x0 = s ts2. 
Obviously, V(H(5l)) n V(/f(s2)) = {^(x0)} and E(H(sx)) n £(H(s2)) = 0. From 
(2Gth,HlAx) it follows that there exist u' e V(H(si)) and u" e V(H(s2)) such that 
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g(x0) u' and g(x0) u" are edges of H. Hence E(H, g(x0)) n E(H(Sl)) 4= 0 * 
* £(Jf, g(x0)) n £(H(s2)). Clearly, £(jf, g(x0)) <= £(/?(*-.)) u £(H(s2)). From(2H>M/ 
,A2) it follows that there exist y* e £(H, g(x0)) n £(H(sj)) and y** e £(H, g(x0)) n 
n £(H(s2)) such that /?(>>*) and /?(>;**) are adjacent in J. Denote wx = h(y*) and 
w2 = h(y**)- It is obvious that wt sf~1(sl) and w2 ef~1(s2). 

We have proved that (37,/>G) holds. Hence G is a partition graph of J. 
Now we assume that (2G>gtHJA2) and (2Hh>JJA2) hold. This implies that also 

(2<?,0,HMi) a nd (2tf,/,,j/-42) hold. Let r' be an arbitrary vertex of G. From (2GtgtHjA2) 
it follows that H(r') is nontrivial connected. From (2H>/tfJ/A3) it follows that J(r') 
is also connected. Since V(j(r')) = f - 1(r ') , we have that (4/>/>G) holds. Hence G is 
a contraction of J, which completes the proof. 

Corollary. Let G be a graph such that S(G) ^ 2. Then G is a contraction of 

Note that if G is a graph without a triangle which can be obtained from a cycle 
of a length at least six by adding one new edge, then G is not a partition graph of L(G). 
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