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Časopis pro pěstování matematiky, roč. 103 (1978), Praha 

MEASURE OF NONCOMPACTNESS OF SUBSETS 
OF LEBESGUE SPACES 

ANTONIN OTAHAL, Praha 

(Received March 31, 1977) 

0. INTRODUCTION 

The purpose of this paper is to derive a characterization of bounded noncompact 
subsets of spaces Lp and t r Similarly as in [4] where analogous considerations are 
carried out for the space of continuous functions defined on a compact metric space, 
our basic notion will be that of measure of noncompactness. See also [5, 6, 7, 8, 9] 
for related results. 

0.1. Definition. Let M be a metric space. The number 

x(Q) = inf {e > 0; Q has a finite e-net in M} 

is called the HausdorjJ measure of noncompactness of the set fi. 
Clearly, x{Q) = 0 iff fi is relatively compact. 

0.1.1. Remark. The notion of the Kuratowski measure of noncompactness is also 
often used. It is defined, for a metric space M, by 

<x(M) = inf {d > 0; M can be divided into a finite number of sets 
with diameters less than d} . 

AH the following considerations based on the Hausdorff measure of noncompact
ness would be analogous if the Kuratowski measure were considered instead. 

The Hausdorff and Kuratowski measures of noncompactness were introduced 
respectively in [2] and [3]. 
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1. SUBSETS O F Lp(X, ST9 fi) 

1.1. Definition. Let LP(X, Sf, p) be a Lebesgue space with the usual norm denoted 
by || • \\P (in the following we assume 1 g p < oo). Let us denote by JVthe set of all 
finite sequences w = {JSJ7--1 of pairwise disjoint sets from Sf of finite strictly positive 
measure. 

We define: two elements wuw2 of W are in the relation w± -< w2 iff for every 
set Ee wt there exist sets Et,..., Ene w2 such that 

Ai(.EA(U-S,))~0. 
i = i 

It is easy to see that JVwith this ordering is a directed set. 
For /eL p ; we W, w = {Ei}n

issi we define 

0 , xt\JEti 

U*) - ' 

kL'*-xeEi-
By Uw we denote the mapping from Lp into Lp defined as 

Uj(f)=fw. 

1.2. Lemma. Letfe Lp, W, Uw as above. Then 

(a) the mapping Uw is linear and continuous; 

(b) IKII - 1 ; 
(c)limt/w/ = / . 

weW 

Proof cf. [rj.IV.8.18. 

1.3. Definition. Let K be a bounded subset of Lp. Let us denote 

a(K, w0) = sup {||/ - Uwf\\p; w0<w,feK}, 

a(K) = inf a(K, w) = lim a(K, w) . 

weW weW 

1.4. Theorem. Let K, a(K)be as above. Then the following inequalities hold: 

ta(K)£X(K)£a(K). 
Proof. 1) In order to prove the first inequality it is sufficient to show that for every 

JB > 0 there exists w e Wsuch that 

a(K,w)£2x(K) + e. 
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Let e > 0. Then there exists a finite (x(K) + e/3)-net A of K. According to 1.2(c) 
there exists vv0 e If such that for every w > w0 and every g e A we have 

\\uwg - g\\P < eft -

For anyfe K there exists g e A such that 

||/ - g\\p < x(K) + e/3 . 

||/ - Uw/||p < ||/ - g\\p + \\g - Uwg\p + \\Jwg - Vwf\p 

and by 1.2(b), 
\\Uwg~Uwf\\p<\\f-g\\p, 

we obtain that for every w > w0 

\\f-Uwf\\p<2X(K) + e, 
that is, 

a(K,w0)__2/(K) + e. . 

2) We shall prove that #(K) _S a(K) 4- e for every e > 0. Let e > 0. There exists 
weW such that a(K,w) S a(K) + e/2. UW(K) is a precompact (a(K) + e/2)-net 
of K. It is clear that there exists a finite (a(K) + e)-net of K. Hence the result. 

1.5. Remark. As an immediate corollary we obtain the well known result (see 
e.g. [1], IV.8.18): A bounded subset K of the space Lp(X, <f, ft) is relatively compact 
ifflimfw == f uniformly on K. 

weW 

We can give more useful conditions in the case of Lp(Q), where Q is a bounded 
measurable subset of the Euclidean N-space. 

1.6. Definition. Let us denote by EN the N-dimensional Euclidean space, \*\N 

a norm on 2%, ffiN the tr-algebra of Lebesgue measurable subsets of EN, and Q an 
element of 9RN. By M we denote the set of all positive integers. 

Forfe LP(Q) and M e 9JlN we define 

M - í° tєENK(M Пí 

1/(0 teMnQ; 

by f0 we denote the function fa. 
For 5 > 0, MeSR^ and a bounded set K in Lp(t3),we define <o(K,M, 5) = 

= sup {(JM |/M(x + h) - / (x) l 'dx) 1 " ; 0 < \h\N < 5,feK}, a>(K) = inf <o(K,Q,d) -
-lim.(o(K,Q,d). i>0 

i-*0 + 

1.7. Theorem. Let K, co(K) be as above. Then 

±<o(K)<;X(K). 
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Proof. The proof is quite analogous to part 1) of the proof of 1.4, where we takef0 

instead of Uwf. 

1.8. Remark. The previous theorem generalizes the well-known result: A bounded 
subset K of LP(Q) is relatively compact iff 

h 

uniformly on K. 

lim ( ( \f0(x + h)- f(x)\" dxY" = 0 

2. SUBSETS OF SPACES tSX) 

2.1. Definition. Let X be a normed linear space with a norm || • ||x, p a real number, 
1 <£ p < co. Let us denote by tp(X) the set of all sequences {xj^Li with elements 
in X such that 

i N * < oo • 
. = 1 

It is evident that the set tp(X) may be considered as a normed linear space with the 
norm 

2.2. Definition. Let x e *fp(K), x =* {xt}iLl9 neN.Wc define the mappings Pn9 Rn 

from £P(X) into tp(X) by 

Pn(x) = (0,...,09xH9xH+l9...)9 Rn(x) = (xl9x29...9xH-l9Q909...). 

Clearly, Pn9Rn are linear continuous mappings and ||JP„|| -= \\R„\\ == 1. 

2.3. Definition. Let K be a bounded subset of /PVK). We denote 

a(K) - inf x(Pw(K)) - lim *(?„(£)) , 
»eHr it-* oo 

b(K)=Supx(Rn(K)), 
neN 

co(K) « lim sup (sup |-P«*||,) . 

2.4. Lemma. Let K, a(K), b(K) be as above. Then the following inequalities hold: 

max (a(K), b(K)) £ x(K) g a(K) + b(K). 

Proof. 1) Clearly a(K) S x(K) and from \\Pn\\ = 1 it follows b(K) £ x(K). 
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2) Let e > 0 be arbitrary. From 2.3 it follows that there exist sets S, Tsuch that S 
is a finite (a(K) + e/2)-net of Pn(K) and Tis a finite (b(K) + e/2>net of jRn(JC). A* 
V = S + Tis a finite (a(K) + b(K) + e)-net of K and e was arbitrary, 

X(K) ^ a(K) + b(K). 

2.5. Theorem. Let K, b(K)9 co(K) be the same as in 2.3. Then 

(*) max (co(K), b(K)) g x(K) and a(K) g co(K) . 

/ / the following additional condition is fulfilled: (+) there exists a compact sub
set N of the space X such that every member of every sequence from K is an element 
of N, then 

(**) X(K) = co(K) = a(K). 

Proof. 1) We have proved b(K) ^ #(K) till now. In order to prove co(K) ^ x(K) 
it is sufficient, for any e > 0, to find neN such that for every m *z n and every 
x eK, ||PMx||p ^ x(K) + £ holds. So let e > 0. There exists a finite (x(K) + e/2)-net 
of K, say 4̂. Then there exists neN such that for every m ^ n and for every a e A, 
\\Pma\\p g e/2. Hence it follows 

||Pmx||p ^ \\Pmx - PMa||p + ||PMa||p, 

where a is that element of A for which 

\\x-a\\p<X(K) + el2. 

||PM|| = 1 now implies 

\\Pmx\\p<X(K) + e. 

2) Clearly, for every e > 0 the zero sequence in fp(X) is a finite (sup ||Pnx||j, + e)-
xeK 

net of P„(K). That is why for every neN the inequality x(Pn(K)) ^ sup ||P„x||p 
xeK 

holds. This implies a(K) ^ co(K). 

3) If the condition (+) is fulfilled then clearly b(K) = 0 and the relation (*) changes 
into (**). 

2.6. Remark. The evident consequence of the preceding theorem is the well-known 
result: Let Xbea real line. Then a bounded subset K oftp(X) is relatively compact iff 

n->co i-=5 

uniformly on K. 
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Added in proof. It is possible to prove the upper estimate for x(K) that is ana
logous to the lower one proved in the theorem 1.7. The remark 1.8. is based on 
both those estimates:* 
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