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QUÁSI-ORDERS OF ALGÉBRAS 

JIŘÍ RACHŮNEK, Olomouc 

(Received June 25, 1976) 

In this páper the set J(9l) of all quasi-orders of an arbitrary partial algebra 91 = (A9 F) 
is studied, in particular, properties of this set provided 91 is a group are shown. 

In the first section it is proved that J(9l) ordered by inclusion is an algebřaic lattice 
and its compact elements are described. The methods and the results of Schmidťs 
book [2] are essentially ušed here. In the second section the lattice J(©) for an arbi
trary group © = (G, +) is characterižed by means of the set ^(©) of all invariant 
subsemigroups with 0 of G. ^(©) ordered by inclusion is a lattice isomorphic to J(©). 
Constructions of the lattice operations in both of these lattices are shown and it is 
proved that, in generál, this lattices are not modular. 

BASIC CONCEPTS AND NGTATIONS 

Let A # 0 be a set, n a positive integer, R an n-ary relation on A. A mapping 
/ : R -> A is called an n-ary partial operation on A. In this čase let us write also 
R = £(/, A). The arity of / is denoted by nf. If D(f, A) = An, then we call / an 
n-ary operation on A. 

Á partial algebra 91 is án ordered páir {A, F), where A # 0 is a set and F is a family 
of finitary partial operations on A. If each/e F is an operation on A, then 91 is called 
an algebra. 

If 91 = (A, F) is* a partial algebra, then the elements of F are called funďamental 
operations on 9t. tet i, n be positive integers, i <£• n. Then ei,n dendtes the i-th n-ary 
projection on A, i.e. the operation on A such that for eaeh au ..., á^e A it is ax ..-:• 
...ane

itn = ař. Let F* = Fu {eiiH; i,neN, i S n}. Let X 4= 0 be a set and let 
w = w(xu ..., xm) be a wořd generated by F* on X. Let au ...,ak(k^ w) be ele
ments of A, 1 S tu •*•> h š in, and let us substitute the elements au .%., ak for 
xií9.,., xik. Then we obtain an (n — fe)-ary partial operation on A that we denote 
by w(..., a%9..., ak> •••)* This partial operation is called an algebřaic function on 91 
induced by w. If weF*9 then each unary algebřaic function induced by w will be 
called an elementary translation on 91. Each product of elementary translations 
on 91 is called a translation on 91. 
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1. THE LATTICE OF ALL QUASI-ORDERS OF A PARTIAL ALGEBRA 

Let A + 0„be a set and let Q be a binary relation on A. Q is a quasi-order of A 
if it is reflexive and transitive. An antisymmetric quasi-order of A is called an order 
of A. A quasi-ordered set (qo-set) is a pair (A, Q), where A #= 0 is a set and Q is 
a quasi-order of A. Similarly an ordered set (po-set). 

For any binary relation R, aRb will denote (a, b) e R. Let 9f = (A, F) be a partial 
algebra and let Q be a quasi-order of the set A. Then Q is called a quasi-order of 
the partial algebra 91 if it satisfies the property (C): 

(C) If feF9 both ax ...anff and bt ... fcW// are defined and atQbi (ah bteA9 

i = l , . . . , nr), then at ... anffQbx ... bnff. A quasi-order Q of 91 is called strong if, 
whenever atQbi (ah b{ e A9 i = 1, . . . , nr) and"^ ... anff(b1 ... bn/f) exists, then also 
*>i ..-bmff(at ... an//) exists and at ... a^/Qb! ... b„ff 

For a partial algebra 91 = (A9 F)9 let us introduce the following notation: 

£0(A) denotes the set of all quasi-orders of the set A9 

.2(9!) denotes the set of all quasi-orders of 91, 

Js(9l) denotes the set of all strong quasi-orders of 91. 

We consider the sets £0(A)9 i>(9l) and £ts(^i) ordered by inclusion. It is clear that 
-20(A) is a complete lattice in which the infimum of each system of elements is formed 
by its intersection and the supremum by its transitive hull. A x A is the greatest 
element, AA = {(a, a); a e A} is the smallest element in £0(A). In the paper u and n 
denote the set-theoretical intersection and union, respectively, v and A denote the 
lattice operations sup and inf, respectively. 

Lemma 1.1. Let 9( « (A9 F) be a partial algebra, Qa e .2(91) (a e /) . Then (]Qae 
€ J2(9l). ae / 

Proof. It is 0 Qael0(A). L e t / e F and let a,( f] Qa) bt (i = 1,.. . ,^). Then 
ael ae/ 

aiQJ>i for all a el and thus if ax... anff, bt ... b„ff are defined it follows that 
*i ••• «» , /GA ... Kff for all ael. This means ax ...attff( f) Qa) bt... bn/f. 

Corollary 1.1.1. For a partial algebra 91 = (A, F), ^(91) is a complete lattice 
that is a closed A-subsemilattice of the lattice £0(A). The lattices J(9l) and £0(A) 
have the same greatest and smallest elements. 

Lemma 1.2. / / Qa (a e J) are strong quasi-orders of a partial algebra 9t = (A, F), 
then the transitive hull of the system {Qa; ael} is also a strong quasi-order of 91. 

Proof. Let us denote the transitive hull of {Qa; a el} by Q. It is Q e £0(A). Let 
/ e F, atQbi (ah bt e A, i == 1, . . . , nf) and let at ... anff be defined. Then there exists 
a sequence 

a{ = z[,zi
29...9z

i
ki ^ bt 
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of elements of A such that 

Zj-iOtfj, j = 2,...,ki9 Qaje{Qa;ael}. 

From the reflexivity of quasi-orders it follows that we can suppose 

fc1 = fc2 = . . . = = f e B / and Qlj=Qtj-... = Qn
a
f~Qaj. 

Then 

aiQaA>-->anfQaAf -

If ax . . . anff exists, then there also exists z\ ... zn
2
ff and it is at ... anffQaxz\ ... zn

2
ff. 

Similarly we obtain z\ ... zn
2

ffQaiz\ ... zn
3

ff, etc. Therefore at ...artffQb1 ... b„ff. 
Analogously for the case that bx ... b„f exists. 

Corollary 1.2.1. If 31 = (A, F) is a partial algebra, then J>s(9l) is a principal ideal 
in J(9l) that is a closed complete sublattice of MQ(A). 

Corollary 1.2.2. If 91 = (A, F) is an algebra, then J(9l) is a closed complete 
sublattice of £0(A). 

00 

Lemma 1.3. Let Q be a reflexive binary relation on a set A 4= 0. Then R = (J Qn 

is the smallest quasi-order of A that contains Q. . »=--
Let (A, g ) be a po-set. A family S of elements of A is called directed if each finite 

subset <= S has an upper bound in 5. 

Lemma 1.4. Let {Qa; a el} be a directed family of quasi-orders of a partial 
algebra 21 = (A, F). Then U Qa = V Qa in 2Q(A) and (J Qa e J(9l). 

ael ael ami 

Proof. It is (J <2« £ V **.)£. • 
ael ael 

Let a( V £o(A)Qa) b. Then there exists a sequence 
ael 

of elements of A such that 

si-iftt,*! 0 = ! »)• e a <e{e«;ae/}. 

Since {()a; a el) is a directed family, there exists an element Q of this family such 
that Qat £ g (i = 1, . . . , n). Therefore z^&Zi (i = 1, . . . , n), and so aQfe. This 
means that a( [J Qa) b and V 4 * 0 6 . S (J e«-

ate/ *^/ <*e/ 

Let us show that V M0(A)Q* G • W - L e t / e F , ^ V i o ^ ) ^ (a«f fcf6i4, i = 

= 1, . . . , nf), and let a! ... anff and 6X . . . &w/f exist. Then for each i = 1, . . . , w/ 

there exists a sequence 

at = z0, z i , . . . , zk'f = bt 
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of elements of A such that zi
iQijz

t
J+u Q{j e {Qa; a el}. Since the family {Qa; ocel} 

is directed, there exists Qe{Qa;<xeI} for which g f j c g (i = 1,..., n/? y = 
= 1, ..., fc,). Then z)Qzi

J+u and so afgb,. By condition (C) we obtain a1... 
- • • <v/e*>i - • • *>«,/> therefore also at ... an//( V .fowGa) *>i . • - Kff. 

ael 

A complete lattice Lis called algebraic if each element of Lis the supremum of 
a set of compact elements. 

Lemma 1.5. Let A 4= 0 be a set. Then the lattice MQ(A) is algebraic. 

Proof. It is known that the lattice 0tQ(A) of all reflexive relations on the set A 4= 0 
is algebraic. The infimum (the supremum) in 0tQ(A) is formed by the intersection 
(by the union). The smallest element in 0tQ(A) is AA, the greatest element is A x A. 
It is clear that SlQ(A) is a closed A -subsemilattice of MQ(A). By the proof of Lemma 
1.4, every directed family {Ra; ael} of elements of £Q(A) fulfils V s0(A)K = U Ra> 

ael ael 

thus V <*o(A)K e -^o(^)- AA, A x Ae £Q(A), therefore by [2, Folgerung 4.7] £Q(A) 
ael 

is an algebraic lattice. 
Let (A, ^ ) be a po-set. A closure operator in A is a function A : A -> A such that 

for each a, be A 

(i) a ^ aA; 

(ii) a ^ b implies aX ̂  bA; 

(iii) (aA) A = aA; 

(iv) if A contains the smallest element 0, then OX = 0. 

Let Lbe an algebraic lattice. A closure operator in Lis called algebraic if it holds 
for each compact element a e L: If a g xX, then there exists a compact element x' ^ x 
such that a g x'X. 

Let 91 = (A, F) be a partial algebra and let R c A x A. Since A x Ae ^(21), 
then by Lemma 1.1 there exists a smallest quasi-order Q^ of 9t that contains I?. 
It is clear that a function X : £Q(A) -> -20(A) such that JRA = QR for each JR e %(A) 
is a closure operator in -20vA). 

"T ^ *-, • M ' -. ' \ •' « .'' .- M 
' v. ' " ' ' ; J •.•:» • ' v • v ' " .. • - - . \ .. f 

Theorem 1.6*-A is an algebrqi? operator. 

Proof. By Lemma 1.5, ' £Q(A) is an algebraic lattice. Then from Lemma 1.4 and 
[2, Lemma 4.7] it follows that A is algebraic. ' '-

» . / ' • • -

Corollary 1.6.1. ^(21) is an algebraic lattice. 

Proof. The lattice £Q(A) and the operator A are algebraic, thus the assertion follows 
from [2, Lemma 4.2]. 
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Corollary 1.6.2. The lattice JS(2I) is algebraic. 

Proof follows from the fact that Js(9l) is a principal ideal in J(9l). 

Lemma 1.7. Let 91 = (A, F) be a partial algebra and let R, Ra (a eI) be binary 
relations on A such that R = (J JRa. Then QR = V M{W)QR*-

ael ael 

Proof. It is Ra s R, thus V 6*. S QR- If G e .2(91), g 2 V Q«., then o. 2 R„ 
ael ael 

for each <xel and then also g 2 U Ra. This implies Q = 6Q -2 6R- Therefore 
ael 

V GR, = QR, i e . Q* = V QR.-
ael ael 

For a, b e .4 we denote <2{(«,&)} by Qa,b. 

Corollary 1.7.1. If R c A x A, then QR = V Qa>h. 
(a,b)eR 

Let now 31 = (A, F) be a partial algebra and let R be a binary relation on A. Then 
oo 

RT denotes the transitive hull of JR, i.e. RT = U Rn; 
n = l 

JRF denotes the set of all (u, v) e A x A such that for an appropriate algebraic 
function xx ... xnp there exist (ai9 fo,-)eR (i = 1, . . . , n) such that u = ax ... anp, 
v = bi ... fowP; 

.R*7 denotes the set of all (w, v) e A x A such that for an appropriate unary algebraic 
function p there exists (a, b)e R such that u = ap, v = fop; 

Ku denotes the set of all (u, v) e 4̂ x A such that for an appropriate translation p 
there exists (a, b)e R such that u = ap, v = bp. 

It is clear that T, F, U, V are closure operators in the complete lattice exp (A x A). 
Let us denote 

R0 = R, Rx = Kg, I*2 = >Ri- K3 = ^2» ••» ^ 2 i = ^ 2 i - l > ^ 2 i + l = ^2b 

oo 

It holds #0 c flj c Let us denote £ = (J # , for K # 0 and 0 = AA. It is clear 
_ i = i 

that RT = KF = R. 

Theorem 1.8. Let 91 = (A, F) be a partial algebra and let R c A x A. Then 

QR = * . 

Proof. It holds R ^ R ^ QR. Let us show that R e J(9l). Let c e A, (x l f x2) e R 
and let us consider the algebraic function xp = cxe1*2. Then (c, c) e RF and therefore 
(c, C)GR. This means £ is reflexive. Further jR2l_1jR2f_i £ R2h thus KR c £, 
Hence R is transitive. 

Let now / e F , a^ fo^ ..., aB/-Rfon/ and let us assume that at ...anff, bt . . . foW// 
exist. Then there exists i such that (ap bj)eR2i (j = 1, ..., nf) and so at . . . 
••• <tnffR2i+ibi . . . fow/f Therefore £ satisfies the condition (C). 
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Theorem 1.9. Let 91 = (Ai, F) be an algebra, R s A x A. Then (RU)T = (RF)T
9 

(RU)T = ((R")7)". 

Proof. Since R" £ KF, then (R17)7 £ (RF)T. Let (c, d) e (RF)T. Then there exists 
a sequence 

c = z0 , z1 ? . . . , zw = d 

of elements of Ai such that (zt-.l9 zt) e RF (i = 1, . . . , n). This means that for an ap
propriate algebraic function xt ...xkp it holds zi^.1 = a1 ... akp, z{ = bt ... bkp9 

where (aj9 bj) e R (j = 1, . . . , fc). 
Let us introduce the following unary functions: 

. xP! = xa2a3 ...akp9 xP2 = bxxa3 ...akp9 ...9xPk = b1b2... bk.xxp . 

It is a1P1 = zx_l9 bjPj = aJ+1Pj+l9 bkPk = zt (j= 1, ..., fc - 1), i.e. (z^l9 zt)e 
e (RU)T. Thus (RU)T = (RF)T. 

Let (c,d)e((Ru)T)u. Thus there exist (al9 bx)9 ...9(an9 bn)eR such that for ap
propriate unary algebraic functions pl9 p29 ..., pn9 q it holds 

c' = atpl9 b1p1 = a2pl9 b2p2 = a3P3, ..., bnpn = d! 

and 

c = c'q , d = d'q . 

Let Pt = ptq. Then 

aiP! = c, fcfPy = aJ+1PJ+l9 bnPn = d (j = 1, ..., n - 1) . 

Therefore (c, d) 6 (Kl/)r, and so (RU)T = ((RV)T)U. 

Theorem 1.10. Let 9t = (A9 F) be an algebra and let R be a binary relation on A. 
Then QR = (RU)T (i.e. for c9de A it holds cQRd if and only if there exist c = 
*= z09 ...9zn = deA9 (ai9 bi)€R (i = 1, . . . , n), and unary algebraic functions 
Pi>.-., Pn such that atpt = zt-l9 fc.p,- = zxfor i = 1 , . . . , n). 

Proof. The assertion follows immediately from Theorems 1.8 and 1.9. 

Corollary 1.10.1. Let 91 = (A9 F) be an algebra, a, b,x,ye A. Then xQatby 
if and only if there texist a sequence x = z0, zl9..., z„ = y of elements of A and 
a sequence of unary algebraic functions p0, pl9..., pn-t on F such that z{ = api9 

zi+1 = bpi(i = \9...9n - 1). 

Theorem 1.11. Let%*=* (A9 F) be an algebra, a9 b9x9ye A. Then xQaby if and 
only if there exist elements x = z0, zl9 ...,-?„ = y of A and translations p09..., j>„_ t 

such that z{ = api9 zi+1 **bpx (i =* 1, . . . , n - 1). 
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Proof. Let us show that (RU')T = (RU)T. If (w, v) e Ru
9 then there exist (a9 b)eR 

and an appropriate unary algebraic function p such that u = ap9 v = ftp. Therefore, 
translations tl9 ...,*-, and a word w of -A such that w(tl9..., tn) = p must exist. Thus 

*F. = w(btl9..., bt,_!, xf „ ari+!,..., ar„) 

is a translation such that 

bFt = aF£+1 (i = 1,..., n - 1), aFx = ap = u , bFn = bp = t;, 

i.e. (w,v)e(Ru/)r. Therefore K17 <= (R^y and so ( R ^ £ (JJl7')r. Finally, since 
#"' e Ru, it holds (R^f = (RU')T. 

Now we shall describe the set .2(21)* of all compact elements in the lattice 5(91) 
of a partial algebra 91 = (A, F). 

Theorem 1.12. Let Q be a quasi-order of a partial algebra 91 = (A, F). Then 
Q e 5(91)* if and only if there exists a finite binary relation R on A such that 
c = eR. 

Proof. Let Qe5(9t). Then AA ^ Q. For R ^ A x A it is R ^ QR and thus 
Ru AA^ QR. Therefore QRUAA £ QR9 and so QRUAA = QR. 

By Lemma 1.6, the closure operator JRA = QR on the lattice M0(A) of all reflexive 
relations on A is algebraic. Thus, by [2, Lemma 4.3], R! e 5(91) is compact in 5(91) 
if and only if R" = R' u AA is a compact element in t%0(A). But this is satisfied (by 
[2, p. 33]) if and only if there exists a finite relation R ^ A x A such that R' u AA = 
= K u A^. 

Theorem 1.13. Let 91 = (A, F) be a partial algebra. Then the lattice of all ideals 
in 5(91)* is isomorphic to 5(91). 

Proof follows from [2, proof of Lemma 3.9]. 

2. THE LATTICE OF ALL QUASI-ORDERS OF A GROUP 

Let © = (G, +) be a group, R e 5(©). Then the pair ©, R is called a quasi-ordered 
group (qo-group). This qo-group will be denoted by © = (G, +,-R) = (G9 R). 
Let us denote PR = {x e G; 0Rx}9 where 0 is the zero-element of the group (G, +). 
PR is called the positive cone of the qo-group (G, R). 

For a system Ra e 5(©) (a e >4), we shall often denote the corresponding positive 
cones by Pa instead of PRgt (a e A). 

Lemma 2.1. Let © = (G, R) fce a qo-group. Then PR is an invariant subsemigroup 
with 0 of ©. 
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Lemma 2.2. Let S be an invariant subsemigroup with 0 of a group © = (G, +). 
The the binary relation R defined by 

aRb iff -a + beS (iffb-aeS) for all a9beG 

is a quasi-order of the group ©. 

Supplement. S = P*. 

Proof. If aRb9 x e G, then — x — a + b + xe S9 — a — x + x + be S, there
fore - ( a + x) + (b + x)€ S9 -(x + a) + (x + b)eS9 and so (a + x) R(b + x)9 

(x + a) R(x + b). 

Proof of Supplement. 1. If xeS9 then — 0 + xeS. Thus 0Rx9 i.e. xeP*. 
2. Let y e P*, i.e. OR y. Therefore -0 + y = yeS. 

Let us denote by ^(©) the set of all invariant subsemigroups with 0 of G. It is 
clear that the correspondence R H> PR (for each R e ^(©)) is a one-to-one mapping 
between £(($>) and ^(©). 

Further, for Rl9 R2 e J(©) it is Rt £ R2 iff PRi c PR2. Therefore the ordered 
sets (-2(©), s ) and (^(©), s ) are isomorphic. 

Theorem 2.3. ̂ (©) ordered by inclusion is an algebraic lattice^ 

Supplement. Let Pa e ^(©), aeA. Then 

a) APa = n*V, 

b) Vi>« = l T , ; 

in particular, 
c\ P v P = P + P = P + P 

Proof. Since ̂ (©) is isomorphic to J(©), ^(©) is (by Corollary 1.6.1) an algebraic 
lattice. 

a) Let Pa € ̂ (©) (a 6 A)9 P = f) -"«• It is evident that P e ^(©). 
aeA 

b) It is clear that F -=- J) Pa is the smallest subsemigroup with 0 containing Pa 
aeA. 

(a e A). Let us show that F is invariant. If x == aai + aa2 + ... + aan e P (aai e Pa<5 

i =- 1,2,..., n), z € G, then 
- z + x + z -» ( - z + aai + z) + ( - z + aa2 + z) + ... + ( - z + aan + z)eP. 

c) If i4 is an invariant subsemigroup of ©, then for each z € G it holds — z + A + 
+ z c Af thus A + z S z + A. Therefore also A + ( - z ) s ( -z ) + _4, i.e. z + 
+ A + (—z) S A9 then z + .4 s .4 + z, and so A + z = z + A. If now 

x « a t + b t + a2 + b2 + ... + an + bH 

(at€Pu 6|€P2, i = 1,2, . . . ,n) , 

334 



then 

x = (at + a2) + (b[ + b2) + a3 + fe3 + ... + an + fr„ = 

= a; + fci + a3 + 63 + ... + an + bn = ... = a + b 9 

where a 6 Pu b e P2. 

Corollary 2.3.1. For the infimum and the supremum in the algebraic lattice 
<2(©) it holds: Let Ra e J(©) (a 6 A). Then 

a) AK« = n*a; 
aeA aeA 

b) i/ a( V Ra) b, then for each i e A there exist x, x' 6 V Pa
 such '^a' (a + x) . 

aeA aeA 

. i^b - x'); 

c) i/ there exist x, x' e V Pa
 fln^ * e -4 SMC^ *^a* (a + x) Ri(° "~ x')> ^ e n a( V -R«) &• 

aeA aeA 

Proof, a) The assertion a) follows from Lemma 1.1. 

b) Let us denote R = V j(®)Ra> P = V *(®)P«- Further, let aRb. Then - a + 6 e 
aeA aeA 

eP, thus — a + b = xfl + ... + xir + xf + xis + ... + x^, where x i meP i w , 
xin 6 Pin, x; e Pi? i1? ..., ir, j l 9 ...,js, 1 e A. (If in the partition there is no element 
of Ph we can add xt = 0.) Let us denote xfl + ... + xir = x, ( —X/J + ... + 
+ (—xJs) = — x'. Then — (a + x) + (b — x')eP f , therefore (a + x)jRf(b — x'). 

c) Let now x, x' e P, i e A, (a + x) R((b — x'). Then — (a + x) + (b — x') = xi? 

Xj6P,-, and so—a + b = x + xf + x'. Ifx = xfl + ... + xi|c, x' = x^ + ... + xJl9 

then — a + b = xfl + ... + xik + xt + xJx + ... + xiV This means —a + beP, 
and thus aRb. 

Theorem 2.4. The set ̂ i(©) of all invariant subsemigroups P with Oof a group G 
such that P n — P = {0} is a closed A-subsemilattice of the lattice ^(©). 

Proof. In ^\(©) it holds 

nP a n- f |P / ,= n (P.n-P^-fO}, 
aeA 0eA a,0eA 

thus A*<«)P«6^i(®)-
aeA 

Corollary 2.4.1. T/ie se* .S^©) 0/ a// orders of a group © is a c/osed A-sub
semilattice of the lattice J(©). 

Theorem 2.5. Let Jd(®) be r/ie set of all directed orders of a group © and let 
•2«i(©) + 0. Then the following conditions are equivalent; 
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(a) ffi - {0}. 

(b) -2j(©) is a sublattice of the lattice J(©). 
(c) £d(G>) isMn A-subsemilattice of the lattice ^(©). 
(d) £td(®) is a v -subsemilattice of the lattice J(©). 

Proof, (c) => (a): Let R e ^(©) and let P be the positive cone of R. Then -P is 
the positive cone of the dual order of the group © and P n - P = {0}, Thus {0} 
is the positive cone of a directed order of ©, and so © = {0}. 

(d) => (a): If P is the positive cone of a directed order of ©, then 

P v -P = P+ (-P) = P - P = G and Gn-G = G. 

Therefore © = {0}. 
(a) => (b) => (c) and (a) => (d) are evident. 
Similarly, we have 

Theorem 2.6. Let ^i(©) be the set of all lattice orders of a group © and let 
«2i(©) =f= 0. Then the following conditions are equivalent: 

(a) © == {0}. 

(b) «2,(©) is a sublattice of the lattice J(©). 
(c) lt((5) is an A-subsemilattice of the lattice J(©). 
(d) J2J(©) is a v -subsemilattice of the lattice J(©). 

Theorem 2.7. &)lf R is a directed order of a group ©, then R has complements in 
the lattices ̂ (©) and £0(G). 

b) If R is an order of a group ©, then its dual order is complement of R in J(©) 
(in %(G)) if and only if R is directed. 

Proof. Part a) is a consequence of part b). 

b) Let us denote the positive cone of R by P. Then 

P n - P = {0}, PV?m-P = P + (-P) = P-P, 

and P — P - G if and only if R is directed. Thus, in this case, the dual order is a com
plement of R in £(&) and, by Corollary 1.2.2, in M0(G) as well. 

Note. If © 4= {0} is a group and if R e Ji(©) has a complement in ^(©), then there 
need not exist an element of -2i(©) among cpttiplements of R. Namely, if we can 
order © only trivially, then {0} n G = {0}, {0} + G = G, thus G is a complement 
of {0} in ^(®) and there exists no complement of {0} that belongs to ^i(©). 

Theorem 2.8. In general, the lattice J(©) is not modular. 
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Proof. Let R, R' e ^d(®), R <=• R'. Then the corresponding positive cones P, p' 
satisfy 

P n - P == {0}, P - P = G, 

F n - F = {0}, F-F = G, 

P c F , - P cz - F , 
and thus 

Pn -F <= F n - F = {0}, 

P + ( - F ) 2 P + ( -P ) = G. 

Therefore — P and — F are ^(©)-complements of P and — F => —P. This means 
that ^(©) is not modular, and so ^(©) is not, either. 

A group © will be called an 0*-group if each its directed order admits an extension 
to a linear one. For example, each 0*-group (see [1]) is an 0*-group. 

Corollary 2.8.1. Let © be an 0%-group and let the lattice .#(©) be modular. Then 
each directed order of © is linear. 

Proof. If there exist R, R' e ^d(©), R c R', then by proof of Theorem 2.8, J2(©) 
is not modular. Therefore each R e ^d(©) is a maximal order of G. And since each 
R e .-2d(©) admits an extension to a linear one, R is linear. 
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