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(Received February 28, 1977) 

It is well-known that Widder's theory [1] of representability by Laplace transform 
of numerical functions gives necessary and sufficient conditions for the existence of 
originals of certain classes. These conditions are especially simple for the class of 
images of exponentially bounded measurable functions and we shall deal in the sequel 
only with this type. 

Widder's theory was generalized to reflexive Banach spaces by MIYADERA [2] and 
further results and generalizations to non-reflexive Banach spaces were obtained by 
the author in [3] and [4]. 

All above mentioned results are of Widder's type, i.e. they are based on the be
havior of the derivatives of the Laplace images on the real halfaxis. But there are 
also other sufficient conditions based on the behavior of the images on lines parallel 
to the imaginary axis. In the sequel we shall show a simple way how to get also con
ditions of complex character from Widder's type theories. 

For the sake of simplicity we restrict ourselves to reflexive spaces only because 
Miyadera's theorem [2] will be our basic tool. But it is easy to obtain in this way 
also the corresponding results for the situations examined in [3] and [4]. 

1. We shall use the following notation: (1) R — the real number field, (2) R+ — the 
set of all positive real numbers, (3) (co, oo) — the set of all real numbers greater 
than co if co e R, (4) C — the complex number field, (5) (Re z > co) — the set of all 
complex numbers whose real part is greater than co if co e R, (6) Mx -» M2 — the 
set of all mappings of the whole set Mx into the set M2. 

2. In the whole paper, E will denote a Banach space over C with the norm || • ||. 

3. Functional analysis (including the theory of vector-valued functions) is \ised to 
the extent of the first three chapters of [7], certain special subjects (e.g. II.4, III.3) 
being omitted. The reader interested only in the numerical case needs nothing more 
than the basic facts from the modem differential and integral calculus. 
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4. Lemma. Let a e R, J e {z : Re z ^ a} -• E and k e {0,1,...}. If 

(a) the function J is continuous on the set {z : Re z ^ a}, 

(p) the function J is analytic on the set {z : Re z > a}, 

(y) there is a K £ 0 so that || J(z)|| ^ K(l + \z\ffor every z e C, Re z ^ a, 

then 

J(a + iff) j<̂ (л) = ( - i ) ^ J a 
— dß 
џ+l H (A - a - ip)p' 

for every A > a and pe {k + 1, k + 2,...}. 

Proof. Let us fix a A > a. 

Further, let K ^ 0 be chosen so that (Y) holds. 

By virtue of Cauchy's integral theorem we obtain from (a) and (P) that (a sketch 
will be helpful) 

( 1 ) ^ > ( A ) = - f , J ( g + i/?> d/? + 
Pi V J _ w ( a + i ^ - A ) " + 1 F 

| * J{* + 2N + JP) f

2 " J(« + , + iN) 

J_ J V (a + 2N + i^-A) ' , + 1 y Jo (a + 17 + iN - X)"+1 

- i f J(*+ '/-**) d, 
Jo a + q - iiV - A)p+1 

for every p e {0,1,...} and N > %X. 

Using (y), we obtain 

li\ II J ( a + w) 
W I (a + i~ - A)>+1 

for every /Jeff and p e {0,1,...}. 

J-(l + (a2 + ß2)1/2f 
= ( (Я-a) 2 + j82)("+1)/2 

, l ir* J(« + 2N + i/?) - - | ^ •- f" [i + ((« 

* } I J . w ( « + 2N + i p - x y + l á p I - J_N[(A - « -
+ 2ІV)2 + )82)1/2]* 

+ 2N)2 + /?2]<>+1)/2 
d j S | 

< * [ " t1 + ((« + 2 N)2 + "T"f d« - 2NKtl + ((a + 2 J V ) 2 + J V 2 ) 1 / 2 ] ' 
~ J-JV ( A - a + 2N) p + 1 {X-a + 2Ny+1 

I P * 4 « + «1 + iN) . I f2" [1 + ((« + r,)2 + N-)-/-]* < 

1 Jo (a + q + i N - A ) ^ 1 ' | - Jo [{X+ri-zf +N2Y>+1"2 ' " 

_: E ("" [ 1 + ( ( g + 2 J V ) 2 + N 2 ) 1 / 2 ^ d _i 2K^ + ( ( g + 2 J V ) 2 + i y 2 ) 1 / 2 l* 

~ Jo N"+1 ' - _ N" 
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/•2JV 

Jo 

J(* + r\ - iN) 

10 (a + rj + iN - X)p 

for every p e {0,1,...} and N > Â. 

It follows from (2) that 

гИ" 
2K[1 + ((g + 2N)2 + N2У'2f 

N" 

(4) r J ( g + 1/?) dj8 exists for every p e {k + 1, fc + 2, ...} , 

(5) J ( g + iA d/,->, „ f ^ + i ^ d/, W (a + i ^ - A Y ^ P N <° ]_„{* +if}-X)P+I P 

for every pe {k + 1, fc + 2,...}. 

Further, by (3) we obtain 

í-ň. Ґ Ąa + 2N + iß) 

® \_N{x + 2N + iß^y+l

dß^0 

І 
i 

2N J(<x + rj+ ІN) 

o (a + r\ + \N - A)p+1 

Ą<x + ц - ІN) ' 

0 {a + t]-iN- X)p+l 

for every pe {fc + 1, fc + 2, ...}. 

The desired result follows from (1), (4), (5) and (6). 

5. Proposition. Let M, co be two nonnegative constants and F e (Re z > co) -* E. 
If the function F is analytic in the domain (Re z > co), then the following two 
statements (A), (B) are equivalent: 

(A) (I) for every a > co, there exist a fce{0, 1,...} and a K ___ 0 so that 
\\F(z)\\ ^ K(l + \z\ffor every z e C, Re z > a, 

(II) for every a > co, there exists an I e {0,1,...} so that 

H°_+Máp 
2rc| |J_0O(l-is/9' 

^ M —i r 
-* IIJ -
/or euer.y s > 0 and r € {/ + 2, I + 3, . . . } , 

(Ill) F(X) -» 0 (A -> oo, A > to); 

(B) 1 ^ 1 - p d ^ 
/ør et>ery A > tа anã" pє {0,1,...}. 
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Proof. (A) => (B). We first fix an arbitrary a > co. 

Now we choose fe, / e {0,1,...} so that the assumptions A (I), (II) hold. 
Denoting J(z) = F(z) for z e C, Re z > a, we observe that according to (A) (I), 

all assumptions of Lemma 4 are fulfilled and consequently we obtain 

F<>\X) = (" ! ) '£ J" --> + r ø dß (1) - vv v - , 

' 27cJ__0O(A-a-ij3)>+1 

for every A > a and p e {k + 1, k + 2,.. .}. 

Further, we write 

(2) q -= max (fc, /). 

It follows from (A) (II) and from (1) and (2) that 

(3) 

F(a + iß) 

(X-aУ+12к 

-oo \ A - a / 

— dß Mp\ 
(X - a) p + 1 

for every A > a and p e {q -f 1, q + 2, ...}. 

Let us now define 

(4) F0(X) = L i ľ . Г tø _ я)« F«+ 1>(/І) dџ for A > a 
«'• Jя 

which is admissible according to (3). 

Further, we obtain easily from (3) and (4) that 

(5) F0>\X) - L _ _ 

pe{0, l , . . . ,?} , • 

(6) F<?+1)(A) - F<+1(X) for every A > a 

Now we are able to prove that 

'- p (n- Xy-"Fi9+1\n)dn for every A > a and 

(7) «FПA)«_ 
Mp! 

(A 
' + 1 for every A > a and p e {0,1,...» 4 + 1} 
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Indeed we see from (5) that 

(8) F0
P)(A)= f°°F0

p+1) (/x)d/i for every A > a and pe {0,1, . . . , q}. 

By (3) and (6) 

(9) | ^ + i ) ( A ) | S M i + ^ for every A > a . 
(A - a)* 

Now (7) follows from (8) and (9) by a simple finite induction. 
On the other hand, we see from (6) that F0 — F is a polynomial. Further, by 

assumption (A) (III) and by (7), F0(X) - F(A) ^^^ 0. Both these facts imply that 

(10) F0(A) = F(A) for every A > a . 

Since a > co was chosen arbitrary, we see from (3), (7) and (10) that 

(11) ||F('>(A)|| =
 M p ! for every a > co, A > a and pe{0 ,1 , . . . } . 

(A - a f 

Now letting a -> co+ in (11) we obtain at once the desired property (B). 

The proof of (A) => (B) is complete. 
(B) => (A). We need the following relation 

(1) A — |A — z|-^A^00 Re z for every z 6 C , Re z > 0 . 
A>Rez 

Indeed, we can write 

A - |A - z\ = A - [(A - Re z)2 + (Im z)2]1/2 = 

-'(-K-^JTV- K-^)7"-
Clearly the second member in the last term tends to Re z as A ~> oo. The first 

tends to zero because 

J 0 (1 + <x)1/2 - \X - Re z / 

Hence (1) holds. 
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According to (1), for every z e C, Re z > co, there exists A(z) > co so that 

(2) " A — co > \z — A| for every A > A(z) . 

Because the function F is assumed analytic in the domain (Re z > co) we obtain 
from (B) and (2) that 

(3) «t-)ii - 1 1 ^ (- - y I = i ^ r 1 l- - Af _i 
II k-=o k! || k=o k! 

k=o (A — a))*+1 A - cok=o \A - co/ 

M l M 
for every z e C , A — c o . ^ z — A A — co — jz — A| 

A — co 

Re z > co and A > A(z) . 

Letting A -» oo, we get from (1) and (3) that 

(4) ||F(z)|| = — for every zeC, Re z > to . 
Re z — co 

It is clear from (4) that the conditions (A) (I), (III) are fulfilled and it remains to 
prove (A) (II). 

Given a fixed a > co, let us denote J(z) = F(z) for z e C, Re z ^ a, we see from 
(4) that all assumptions of Lemma 4 are fulfilled with k = 0 and consequently we 
obtain 

(5) F<">(A) = ( - y - L f • f ( g + i / ?> d/? V ' W V ^ 2 T T J _ 0 0 ( A - a - i / J ) ' + 1 

for every a > co, A > a and p e {1,2,...} . 

Writing A — a = s and p + 1 = r in (5) we obtain that 

(6) ! r *_«____*)d/J _ (_ i y ___L^ j * - ^ + B) 
W 2 K j _ _ ( l - i s ^ V ' (r-1)! V } 

for every a > co , s > 0 and r e {2, 3,...} . 

It is now immediate that (B) and (6) give (A) (II) with I = 0. 

The proof of (B) => (A) is complete. 

6. Auxiliary theorem (Miyadera [2], Widder [1] in the numerical case). Let M, co 
be two nonnegative constants and F e (co, co) -> 2L If the space E is reflexive, then 
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the following two statements (A), (B) are equivalent: 

(A) (I) the function F is infinitely differentiate on (co9 oo), 

(П) 
Mp 

, —-"*". r- /or every A > o and 

> 0) . 

pe{0, l , . . . } ; 

(B) there exists a function feR+ -• E such that 

(I) / is measurable on R+

9 

(II) ||/(*)|| ^ Me'01 for almost all teR+ , 

(III) F(A) = re-A t/(T)dT /or every A 

7. Theorem. Lef M, co fee fwo nonnegative constants and F e (Re z > co) -+ E. 
If the space E is reflexive, then the following two statements (A), (B) are equivalent: 

(A) (I) the function F is analytic in the domain (Re z > co)9 

(II) for every a > co9 there exist a fce{0,1,...} and a K ^ 0 so that 

||F(z)|| S K(l + \z\f for every z e C, Re z > a, 

(III) /or et?ery a > co9 there exists an le {0,1,...} so that 

L\\r « d ^ M 

for every s > 0 and r e {/ + 2, / + 3, ...}, 

(IV) F(A) -> 0 (A -> oo, A > a>); 

(B) fhere exists a function feR+ -+ E such that 

(I) / is measurable on R+

9 

(II) \\f(t)\\ ^ Me0* /or a/mos* ei?ery f e R+ , 

(III) i e _ z t/(T)dr = f(z) /or every zeC, Re z > co. 

Proof. Immediate consequence of Theorem 6 and Proposition 5. 

8. Remark. In an analogous way as above, it is possible to get complex characteri
zations of Laplace transforms of exponentially Lipschitzian and exponentially weakly 
compactly bounded functions — cf. [3], [4] — and also of analogous types of in-
tegrable functions. 
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In the case of exponentially Lipschitzian functions the reader obtains easily the 
corresponding result from Theorem 4 of [3] by means of Proposition 5 which plays 
the fundamental role in the relation between "real" and "complex" characteristic 
properties of Laplace transform. 

In the case of exponentially weakly compactly bounded functions, we apply 
Theorem 13 of [4] but before applying Proposition 5, this must be somewhat modified. 
Namely, we first choose a convex circled closed subset C of E and replace the 
inequality in (A) (III) by 

— r f ( a + 1 ^ d j 3 6 C for every a > co, s > 0 and r e {I + 2, / + 3, ...} , 
2 t tJ_ 0 0( l - is j3) ' 

and further (B) by 

Fip)(fy e T P\ ., C for every k > co and p e {0,1,...} . 
(A - coy' * 

The proof of such a modified Proposition 5 proceeds without essential changes 
and may be left to the reader. 

9. Remark, The condition (A) (III) of Theorem 7 represents a weakening of clas
sically known sufficient conditions of the type of absolute integrability of F over 
lines parallel to imaginary axis, i.e. of the type 

/ : 
||F(a + i/?)|| d/S < oo . 

0 

See, for example, [5, Chap. VII] or [6]. 

10. Remark. It is clear that the inequality in (A) (III) of Theorem 7 cannot be 
replaced by 

-*J-»|(i-is/9r| 
for every s > 0 and r e {/ + 2, J + 3 , . . .}, 

since this implies, by Fatou's lemma, 

i f 0 0 ||F(a + i/0|| dP^M 
2*J-00 

and this inequality is essentially less general than that of (A) (III) as may be seen 
from the function F(z) « ijz. 
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11. Remark. The conditions (A) (I) and (II) of Theorem 7 may be understood as 
necessary and sufficient conditions for the function F to be the Laplace transform of 
an exponentially bounded distribution with nonnegative support (cf. [8]). Thus the 
conditions (A) (III) and (IV) of the same theorem specify the class of functions whose 
distribution originals are functions. 
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