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ON THE EXISTENCE OF A 3-FACTOR IN THE FOURTH 
POWER OF A GRAPH 

LADISLAV NEBESK*, Praha 

(Received December 9, 1977) 

Let G be a graph in the sense of [1] or [2]. We denote by V(G) and E(G) its vertex 
set and edge set, respectively. The cardinality |V(G)| of V(G) is referred to as the 
order of G. If FVis a nonempty subset of V(G), then we denote by <W>G the subgraph 
of G induced by W. A regular graph of degree m which is a spanning subgraph of G 
is called an m-factor of G. It is well-known if G has an m-factor for some odd m, 
then the order of G is even. If n is a positive integer, then by the n-th power Gn of G 
we mean the graph G' with the properties that V(G') = V(G) and 

E(G') = {uv; u,ve V(G) such that 1 = d(u, v) = n) , 

where d(wt, w2) denotes the distance of vertices wx and w2 in G. 
CHARTRAND, POLIMENI and STEWART [2], and SUMNER [5] proved that if G is 

a connected graph of even order, then G2 has a 1-factor. 
The second power of none of the connected graphs in Fig. 1 has a 2-factor. But 

if G is a connected graph of an order p ^ 3, then G3 has a 2-factor; this follows 
from a theorem due to SEKANINA [4], which asserts that the third power of any 
connected graph is hamiltonian connected. 

The third power of none of the connected graphs of even order which are given 
in Fig. 2 has a 3-factor. But for the fourth power the situation is different: 

Theorem. Let G be a connected graph of an even order p ^ 4. Then G 4 has a 3-
factor, each component of which is either K4 or K2 x K3. 

o Q ^ Q y o o — - - Ş p o | o o ^o o o $ 

Fig. 1. 
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Fig. 2. 

Note that Kn denotes the complete graph of order n, and K2 x K3 denotes the 
product of K2 and K3 (see Fig. 3). 

Before proving the theorem we establish one lemma. Let T be a nontrivial tree. 
Consider adjacent vertices u and v. Obviously, T — uv has exactly two components, 
say Tx and T2. Without loss of generality we assume that u e V(Tt) and v e V(T2). 
Denote V(T, u, v) = V(TX) and V(T, v9 u) = V(T2). 

Fig. 3. 

Lemma. Let T be a tree of an order p _ 5. Then there exist adjacent vertices u 
and v such that 

(i) |V(T,u,v) | = 4 and 

(ii) |V(T, w, u)| <j 3 for every vertex w + v such that uw e E(T). 

Proof of the lemma. Assume that to every pair of adjacent vertices u and v such 
that |V(T, u9 v)\ ^ 4 , there exists a vertex w =t= v such that uw e E(T) and 
|V(T, w, w)| ^ 4. Since p ^ 5, it is possible to find an infinite sequence of vertices 
ô> vu v29... in T such that 

(a) v0 has degree one; 

(b) v0vi9 vtv29 v2v39... e E(T); 

(c) v2 4= v09 v3 + vl9 v4 4= t;2,...; and 

(d) |V(T, vl9 v0)\ = 4, |V(T, v29 vt)\ = 4, |V(T, v39 v2)\ = 4,... 

Since Tis a tree, (b) and (c) imply that the vertices v09 vi9 v29... are mutually dif
ferent, which is a contradiction. Hence the lemma follows. 
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Proof of the theorem. Since G is connected, it contains a spanning tree, say T. 
First, let p - 4, 6, or 8. If p = 4, then G4 = T4 = K4. 
Let p =5 6. Then T is isomorphic to one of the six trees of order six (see the list 

in [3], p* 233). It is easy to see that T4 and therefore G4 contains a 3-factor isomorphic 
to K2 x K3. 

Let p as 8. By Lemma there exist adjacent vertices u and v of Tsuch that (i) and (ii) 
hold. If |V(T,u, v)\ = 4, then T4 (and therefore G4) contains a 3-factor which con
sists of two disjoint copies of K4. Let |V(T, u, v)\ ^ 5. Since p = 8, we have 
|V(T, w, u)| =- 3 for every vertex w adjacent to u, w 4= v. Then there exists a set R of 
two, three, or four vertices adjacent to u such that 

< U V(T, r, u))T 
reR 

is isomorphic to one of the graphs Fx — F4 in Fig. 4. Denote 

VR = U K(T, * M) • 
reR 

F< 5 Z Z ?! 

Fig A. 

It is clear that (VR)T4 = K4. Since T - VK is a tree of order four, we conclude that G4 

has a 3-factor which consists of two disjoint copies of K4. 
Next, let p *> 10. Assume that for every connected graph G' of order p — 6 or 

p — 4 we have proved that (G')4 has a 3-factor, each component of which is either K4 

or K2 x K3. By Lemma there exist adjacent vertices u and v of Tsuch that (i) and (ii) 
hold. Let |V(T,u, v)\ = 4 or 6; then (V(T,u, v)}T4 contains a 3-factor isomorphic 
to either K4 or K2 x K3; since G — V(T,u, v) is connected, by the induction as
sumption (G — V(T, u, v))4 has a 3-factor, each component of which is either K4 

or K2 x K3; hence G4 has a 3-factor with the required property. Now, let either 
|V(T, u9 v)\ = 5 or |V(T, u, v)\ J> 7. Then there exists a set S of two, three, or four 
vertices adjacent to u such that 

<[)V(T,s,u)}T 
seS 

is isomorphic to one of the graphs Ft — F5 in Fig. 4. Denote 

Vs~{)V(T9s,u). 
seS 

Since T — Vs is a tree, we conclude that G - Vs is a connected graph. According to 
the induction assumption (G — Vs)

4 has a 3-factor, each component of which is 
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either K4 or K2 x K3. Obviously, \VS\ = 4 or 6. If \VS\ = 4, then <Vs>r4 = K4. 
If |VSJ = 6, then it is not difficult to see that <Vs>r« contains a 3-factor which is 
isomorphic to K2 x K3. This implies that G4 has a 3-factor with the required propert-
ty, which completes the proof. 

Corollary. Let G be a connected graph of an even order _4. Then G4 contains 
at least three edge-disjoint 1-factors. 
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